English

Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

1296
2024-03-18 13:56:19
See translation

Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.

John Hall's research focuses on understanding and manipulating stable lasers, laying the technical foundation for measuring small fractional distance changes caused by gravitational waves passing through them. This work on laser arrays earned him the 2005 Nobel Prize in Physics.

On this basis, JILA and NIST academicians Jun Ye and their team embarked on an ambitious journey to expand the boundaries of precision measurement. They focus on improving the Pound Reverse Hall (PDH) method, a specialized technique developed by RV Pound, Ronald Drever, and Jan Hall, which plays a crucial role in precision optical interferometry and laser frequency stability.

Although the PDH method is crucial for ensuring laser frequency stability, the limitations of residual amplitude modulation (RAM) may affect measurement accuracy. In a recent paper published in Optica, Ye's team, along with JILA electronics staff Ivan Ryger and Hall, proposed a new PDH method. This method reduces RAM to an unprecedented low level, simplifies the system, and enhances robustness.

PDH technology is the foundation of various experiments, from gravitational wave interferometers to optical clocks. Further improvement of this technology can bring progress to many scientific fields.

The PDH method was introduced in 1983 and has become the cornerstone of laser physics, widely used in various experiments. It precisely measures laser frequency or phase fluctuations by introducing special "sidebands" around the main beam (referred to as the "carrier"). Comparing these sidebands with the main carrier helps detect subtle changes in frequency or phase relative to the reference, thereby reducing noise and errors.

Physicists use this technique to detect different environments, such as optical cavities made of mirrors, by "locking" the laser into the cavity. However, noise like RAM can alter the relative offset of the reference beam, thereby affecting stability.

Reducing RAM is crucial for improving the stability of PDH technology and laser measurement. The new method developed by JILA researchers is expected to simplify this task and make significant progress in precision measurement and laser physics.

Source: Laser Net

Related Recommendations
  • The L4 Aton laser at Eli Beamlines achieves an output power of 5 petawatts

    According to the Extreme Light Infrastructure (ELI), the L4 ATON kilojoule laser at the ELI beamline facility in Dolní Břežany near Prague, Czech Republic, has achieved peak powers exceeding 5 petawatts (10¹⁵ W).The research institute stated: “This confirms that L4 can operate safely and reliably at this energy level, which is crucial for scaling up power and preparing for scientific experiments.”...

    10-28
    See translation
  • Sill Optics launches F-Theta lenses for photovoltaic applications

    The energy transformation has brought us global challenges. In this regard, renewable energy sources such as photovoltaic are crucial. The key to improving the efficiency of photovoltaic power generation is to improve the manufacturing process of solar cells. Laser material processing is used to weld individual batteries into modules, dope selective emitters, and remove very thin antireflective an...

    2023-11-22
    See translation
  • Chip based comb laser illumination and unlocking of new applications

    Researchers have shown that dissipative Kerr solitons (DKS) can be used to create chip based optical frequency combs with sufficient output power for optical atomic clocks and other practical applications. This progress may lead to chip based instruments being able to perform precise measurements that were previously only possible in a few specialized laboratories.Gr é gory Moille from the ...

    2023-08-30
    See translation
  • The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

    In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, con...

    04-15
    See translation
  • Bystronic expands laser product field through acquisition of Rofin

    Swiss mechanical engineering company Bystronic will acquire Coherent's Materials Processing Tools business unit and its Rofin laser brand in order to expand its business into the fields of medical devices, semiconductors, and general manufacturing. Bystronic is diversifying its business interests. As detailed in a company statement, the mechanical engineering company, which operates out of Zuric...

    11-04
    See translation