English

Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

1150
2024-03-18 13:56:19
See translation

Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.

John Hall's research focuses on understanding and manipulating stable lasers, laying the technical foundation for measuring small fractional distance changes caused by gravitational waves passing through them. This work on laser arrays earned him the 2005 Nobel Prize in Physics.

On this basis, JILA and NIST academicians Jun Ye and their team embarked on an ambitious journey to expand the boundaries of precision measurement. They focus on improving the Pound Reverse Hall (PDH) method, a specialized technique developed by RV Pound, Ronald Drever, and Jan Hall, which plays a crucial role in precision optical interferometry and laser frequency stability.

Although the PDH method is crucial for ensuring laser frequency stability, the limitations of residual amplitude modulation (RAM) may affect measurement accuracy. In a recent paper published in Optica, Ye's team, along with JILA electronics staff Ivan Ryger and Hall, proposed a new PDH method. This method reduces RAM to an unprecedented low level, simplifies the system, and enhances robustness.

PDH technology is the foundation of various experiments, from gravitational wave interferometers to optical clocks. Further improvement of this technology can bring progress to many scientific fields.

The PDH method was introduced in 1983 and has become the cornerstone of laser physics, widely used in various experiments. It precisely measures laser frequency or phase fluctuations by introducing special "sidebands" around the main beam (referred to as the "carrier"). Comparing these sidebands with the main carrier helps detect subtle changes in frequency or phase relative to the reference, thereby reducing noise and errors.

Physicists use this technique to detect different environments, such as optical cavities made of mirrors, by "locking" the laser into the cavity. However, noise like RAM can alter the relative offset of the reference beam, thereby affecting stability.

Reducing RAM is crucial for improving the stability of PDH technology and laser measurement. The new method developed by JILA researchers is expected to simplify this task and make significant progress in precision measurement and laser physics.

Source: Laser Net

Related Recommendations
  • EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

    The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerosp...

    2024-04-15
    See translation
  • GZTECH selected as a reserve "golden seed" enterprise for listing in Hubei Province

    Recently, relevant departments officially released the list of reserve "golden seed" enterprises for listing in Hubei Province for 2024-2025. Following being selected as reserve "golden seed" enterprises for listing in Donghu High tech Zone and Wuhan City in 2024, Wuhan GZTECH Co., Ltd. (hereinafter referred to as "GZTECH") once again stood out from many candidate enterprises with its outstanding ...

    05-19
    See translation
  • GeoCue introduces three new TrueView 3D imaging systems

    Earlier this month, GeoCue, a liDAR mapping hardware and software provider, announced the launch of three new products for its TrueView 3D imaging system. These new systems combine laser scanning and high-resolution imaging, including the TV625, TV680 and TV680LR. All three systems are NDAA-compliant.All three systems are designed to be used in conjunction with drones, and the company note...

    2023-08-04
    See translation
  • Chinese University of Science and Technology Reveals a New Physical Mechanism of Photoinduced Particle Rotation

    Light has angular momentum properties. Circularly polarized or elliptically polarized beams carry spin angular momentum (SAM), while beams with helical phase wavefronts carry orbital angular momentum (OAM). During the interaction between light and particles, the transfer of angular momentum can generate optical torque, driving particles to rotate. Among them, the transfer of optical spin angular m...

    2024-06-25
    See translation
  • ALPD laser projection technology enters the Middle East market

    With the continuous growth of user numbers and usage duration, the quality and reliability of the ALPD laser projection solution independently developed by the global laser display leader Guangfeng Technology (688007. SH) have been increasingly recognized by more and more users.It is reported that VOX Cinemas, a well-known cinema line in the Middle East, has also joined the ALPD laser projection s...

    2024-08-07
    See translation