English

French laser giant's profits decline, laser radar business restructuring

5
2024-10-09 13:54:03
See translation

Recently, Marvel Fusion, a pioneer in the field of laser fusion, successfully raised 62.8 million euros (approximately 70.3 million US dollars) in funding. This funding will provide strong impetus for its fusion technology demonstration on existing laser equipment and accelerate the comprehensive technology validation process at its facility in Colorado, with the goal of achieving this milestone by 2027.

 



This financing is led by HV Capital and has received support from several well-known investment institutions, including b2venture, Bayern Kapital, Deutsche Telekom, Earlybird, SPRIND, and Tengelmann Ventures. Of particular note is that Marvel Fusion has also been favored by the European Innovation Council, with a grant of 2.5 million euros and the prospect of receiving an additional equity investment of up to 15 million euros (pending approval), undoubtedly adding a significant amount to the company's financing journey.

In addition, Marvel Fusion is honored to have been selected for the accelerator program jointly launched by the European Innovation Council and the Small and Medium Enterprise Executive Agency, which aims to support the expansion of its fuel target production scale through a grant of 2.5 million euros and may introduce up to 15 million euros in equity investment as further assistance.

As one of the explorers in the field of inertial confinement fusion, Marvel Fusion's approach aligns with the advanced technology path of the US Department of Energy's National Ignition Facility (NIF), which has validated the net energy gain of laser nuclear fusion in 2022, setting an important milestone for the entire industry. However, Marvel Fusion, with its cutting-edge laser technology, is committed to improving the power and efficiency of lasers, surpassing the limitations of NIF based on old designs.

The company is partnering with Colorado State University to rapidly build a demonstration plant, with the core goal of validating its fusion technology competitiveness through two 100 joule laser systems. These lasers will accurately bombard nanostructured targets at ultra-high speeds (one billionth of a second per second), releasing high-energy positive ions through photon stripping, and triggering fusion reactions.

The hybrid fuel strategy chosen by Marvel Fusion (mainly composed of hydrogen and boron) demonstrates its flexibility and foresight in fuel selection. Moritz von der Linden emphasized that this strategy facilitates adjusting fuel combinations according to future technological developments.

Compared to the complex fuel particle preparation process of NIF (which requires gold lining wrapping and takes two weeks), Marvel Fusion's fuel and target design are more suitable for large-scale production. Its fuel remains solid at room temperature, easy to handle, and the target structure uses silicon material, greatly simplifying the production process and cost.

Even more exciting is that Marvel Fusion is able to efficiently produce nanoscale targets on standard 300mm wafers using mature semiconductor lithography technology, with each wafer capable of producing approximately 5000 targets and sizes controlled between 50 and 80 nanometers. This innovation not only reduces production costs, but also accelerates the pace of technology towards commercialization.

Looking ahead, the first prototype of Marvel Fusion is expected to be released between 2032 and 2033. The prototype will integrate hundreds of kilojoule level lasers, each capable of emitting about 10 times per second, marking another major breakthrough for the company in the field of laser fusion.

Source: OFweek

Related Recommendations
  • The team of researcher Wei Chaoyang of Shanghai Optical Machinery Institute has realized the manufacture of fused quartz components with high resistance to UV laser damage

    Recently, a team led by researcher Zhaoyang Wei of the Precision Optics Manufacturing and Testing Center of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has realized the manufacture of fused quartz components with high resistance to UV laser damage based on the defect characterization and removal process of CO2 laser. The research is published in Light: Advance...

    2023-09-11
    See translation
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    01-02
    See translation
  • MIT research enables 3D printers to recognize new materials

    According to scientists at MIT, mathematical formulas developed by MIT researchers and other institutions can significantly improve the sustainability of 3D printing.Issues with 3D printing of plastics3D printers typically use mass-produced polymer powders to print parts, which are consistent and predictable, but also difficult to recycle.Other more environmentally friendly options also exist and ...

    04-18
    See translation
  • The Science Island team has made new progress in detecting atmospheric formaldehyde

    Recently, Zhang Weijun, a research team of the Anguang Institute of the Chinese Academy of Sciences, Hefei Academy of Materials, made new progress in atmospheric formaldehyde detection, and the related achievements were published on the international TOP journal Sensors and Actors: B. Chemical under the title of "Portable highly sensitive laser absorption spectrum formaldehyde sensor based on comp...

    2023-09-21
    See translation
  • LIS Technologies closes $11.88 million seed round of financing

    On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing. According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a numb...

    08-22
    See translation