English

2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

1167
2024-03-20 15:47:32
See translation

Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light intensity captured by cameras. Therefore, designing and developing new optical activation functions is crucial for achieving optical neural networks that utilize ambient light for computation.

In a paper published in Nature Communications, a research team led by Professor Duan Xiangfeng and Professor Aydogan Ozcan from the University of California, Los Angeles reported a new strategy using a photonic neuron array to achieve strong optical nonlinearity for broadband incoherent light at low light intensity.

Their devices are heterogeneous and integrated with two-dimensional transparent phototransistors and liquid crystal modulators. Under weak light irradiation, TPT has high electrical resistance, and most of the voltage drop occurs on TPT. LC is not disturbed and maintains transparency. However, at high input optical power, TPT becomes conductive, causing most of the voltage to drop on the LC layer, thereby cutting off optical transmission.

In their experimental demonstration, the designed photoelectric neuron allowed for nonlinear modulation of its own amplitude by spatially and temporally incoherent light in visible light wavelengths, with photon loss of only~20%. They created a 100x100 array of photoelectric neurons and exhibited strong nonlinear behavior under laser and white light irradiation.

The nonlinear photoelectric array is further integrated as part of the mobile phone based imaging system, used for intelligent reduction of glare, selective blocking of strong glare, and almost no attenuation of objects with weaker intensity in the imaging field of view.

Device modeling shows that the optical intensity threshold is very low, only 56 μ W/cm2 produces significant nonlinear response for optimized devices, and the energy consumption per photon activation is as low as 69 fJ.

This photoelectric neuron array can perform nonlinear self amplitude modulation on spatially incoherent light, with characteristics such as low light intensity threshold, strong nonlinear contrast, wide spectral response, fast speed, and low photon loss. For image processing and visual computing systems that do not rely on strong laser beams, this performance is very ideal.

In addition to intelligent glare reduction, the cascaded integration of photoelectric neuron arrays and linear diffraction optical processors can be used to construct nonlinear optical networks, which may be widely used in computational imaging and sensing, and also open the door to the design of new nonlinear optical processors that use ambient light.

Source: Laser Net

Related Recommendations
  • The world's smallest blue light laser

    Russian scientists have successfully developed the world's smallest blue nanolaser, with a volume of only 0.005 cubic micrometers, breaking through the diffraction limit theory that the size of the light source must not be smaller than its wavelength. This breakthrough has opened up a new technological path for the development of cutting-edge fields such as ultra high definition displays, quantum ...

    11-19
    See translation
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    See translation
  • Coherent Company Announces the Launch of High Power Non Cooled G10 Pumped Laser Module for Submarine and Ground Applications

    Coherent, a leading supplier of high-performance optical network solutions, announced today the launch of a new high-power non cooled pump laser module based on the latest G10 series semiconductor laser tube technology. These new modules are specifically developed for high reliability submarine applications as well as single chip and dual chip ground applications.The new non cooled pump laser modu...

    2024-03-23
    See translation
  • Free space nanoprinting beyond optical limitations can create 4D functional structures

    Two photon polymerization is a potential method for nanofabrication of integrated nanomaterials based on femtosecond laser technology. The challenges faced in the field of 3D nanoprinting include slow layer by layer printing speed and limited material selection due to laser material interactions.In a new report in Progress in Science, Chenqi Yi and a team of scientists in the fields of technical s...

    2023-10-09
    See translation
  • Ultra capillary properties of composite liquid absorbing cores manufactured by laser powder bed melting additive manufacturing

    Researchers from Sichuan University, the Key Laboratory of Advanced Special Materials and Preparation Processing Technology of the Ministry of Education, and the Nuclear Additive Manufacturing Laboratory of China Nuclear Power Research and Design Institute reported on the study of the ultra capillary performance of laser powder bed melting additive manufacturing composite structure liquid absorbin...

    03-20
    See translation