English

2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

1112
2024-03-20 15:47:32
See translation

Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light intensity captured by cameras. Therefore, designing and developing new optical activation functions is crucial for achieving optical neural networks that utilize ambient light for computation.

In a paper published in Nature Communications, a research team led by Professor Duan Xiangfeng and Professor Aydogan Ozcan from the University of California, Los Angeles reported a new strategy using a photonic neuron array to achieve strong optical nonlinearity for broadband incoherent light at low light intensity.

Their devices are heterogeneous and integrated with two-dimensional transparent phototransistors and liquid crystal modulators. Under weak light irradiation, TPT has high electrical resistance, and most of the voltage drop occurs on TPT. LC is not disturbed and maintains transparency. However, at high input optical power, TPT becomes conductive, causing most of the voltage to drop on the LC layer, thereby cutting off optical transmission.

In their experimental demonstration, the designed photoelectric neuron allowed for nonlinear modulation of its own amplitude by spatially and temporally incoherent light in visible light wavelengths, with photon loss of only~20%. They created a 100x100 array of photoelectric neurons and exhibited strong nonlinear behavior under laser and white light irradiation.

The nonlinear photoelectric array is further integrated as part of the mobile phone based imaging system, used for intelligent reduction of glare, selective blocking of strong glare, and almost no attenuation of objects with weaker intensity in the imaging field of view.

Device modeling shows that the optical intensity threshold is very low, only 56 μ W/cm2 produces significant nonlinear response for optimized devices, and the energy consumption per photon activation is as low as 69 fJ.

This photoelectric neuron array can perform nonlinear self amplitude modulation on spatially incoherent light, with characteristics such as low light intensity threshold, strong nonlinear contrast, wide spectral response, fast speed, and low photon loss. For image processing and visual computing systems that do not rely on strong laser beams, this performance is very ideal.

In addition to intelligent glare reduction, the cascaded integration of photoelectric neuron arrays and linear diffraction optical processors can be used to construct nonlinear optical networks, which may be widely used in computational imaging and sensing, and also open the door to the design of new nonlinear optical processors that use ambient light.

Source: Laser Net

Related Recommendations
  • An advanced laser processing laboratory for semiconductor materials and an all solid-state advanced laser research center will be established here

    On October 15th, the Laipu Technology National Headquarters and Integrated Circuit Equipment R&D and Manufacturing Base project successfully held a groundbreaking ceremony in the Chengdu High tech Zone.Project Business CardTotal project investment:1.66 billion yuanProject area:Covering an area of 39 acres, with a construction area of 65000 square metersProject Planning:Construction will begin...

    2023-10-18
    See translation
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    See translation
  • Multiple international laser companies continue to increase investment in the Chinese market

    In early spring of 2025, China's laser industry once again attracted the attention of global laser giants, ushering in a new wave of international investment boom.After several global laser giants accelerated their layout in China in 2024, in February 2025, Carl Zeiss from Germany and Bystronic from Switzerland, two global giants in the optical and laser fields, also announced significant expansio...

    02-15
    See translation
  • The 2023 International Quantum Photonics Conference attracted over 600 attendees from 16 countries and regions

    On November 25th, Jinhua welcomed the 2023 International Quantum Photon Conference, which will lead the future of technology. This grand event is jointly hosted by the Chinese Society of Optical Engineering and the Jinhua Municipal Government, with joint support from the University of Science and Technology of China, Zhejiang Normal University, and the PhotoniX journal. The conference, with the th...

    2023-11-27
    See translation
  • GOLDEN laser die-cutting machine will be exhibited at UPAKEXPO 2024

    At the UpakExpo 2024 exhibition to be held in Moscow at the end of January, Chinese company Golden Laser will showcase for the first time two laser die-cutting machines focused on the printing, labeling, and packaging markets in Russia.The Golden Laser LC350 is a web machine designed to handle labels printed on digital and flexographic printing machines. It can cut, die cut, and kiss cut paper, pl...

    2024-01-12
    See translation