English

2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

1216
2024-03-20 15:47:32
See translation

Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light intensity captured by cameras. Therefore, designing and developing new optical activation functions is crucial for achieving optical neural networks that utilize ambient light for computation.

In a paper published in Nature Communications, a research team led by Professor Duan Xiangfeng and Professor Aydogan Ozcan from the University of California, Los Angeles reported a new strategy using a photonic neuron array to achieve strong optical nonlinearity for broadband incoherent light at low light intensity.

Their devices are heterogeneous and integrated with two-dimensional transparent phototransistors and liquid crystal modulators. Under weak light irradiation, TPT has high electrical resistance, and most of the voltage drop occurs on TPT. LC is not disturbed and maintains transparency. However, at high input optical power, TPT becomes conductive, causing most of the voltage to drop on the LC layer, thereby cutting off optical transmission.

In their experimental demonstration, the designed photoelectric neuron allowed for nonlinear modulation of its own amplitude by spatially and temporally incoherent light in visible light wavelengths, with photon loss of only~20%. They created a 100x100 array of photoelectric neurons and exhibited strong nonlinear behavior under laser and white light irradiation.

The nonlinear photoelectric array is further integrated as part of the mobile phone based imaging system, used for intelligent reduction of glare, selective blocking of strong glare, and almost no attenuation of objects with weaker intensity in the imaging field of view.

Device modeling shows that the optical intensity threshold is very low, only 56 μ W/cm2 produces significant nonlinear response for optimized devices, and the energy consumption per photon activation is as low as 69 fJ.

This photoelectric neuron array can perform nonlinear self amplitude modulation on spatially incoherent light, with characteristics such as low light intensity threshold, strong nonlinear contrast, wide spectral response, fast speed, and low photon loss. For image processing and visual computing systems that do not rely on strong laser beams, this performance is very ideal.

In addition to intelligent glare reduction, the cascaded integration of photoelectric neuron arrays and linear diffraction optical processors can be used to construct nonlinear optical networks, which may be widely used in computational imaging and sensing, and also open the door to the design of new nonlinear optical processors that use ambient light.

Source: Laser Net

Related Recommendations
  • XTool enables pre-sale of F1 superfiber and diode laser cutting machines

    Tool has started pre-sales for the F1 Ultra, a 20 watt fiber and diode dual laser engraving machine. OEMs have stated that it is a win-win product and its so-called "flagship" model.Fiber lasers are mainly used for metal materials and usually work faster than diode lasers, but other materials have better performance when using diode lasers. F1 Ultra aims to bridge this gap by using a power of 20W ...

    2024-05-09
    See translation
  • Fujitsu collaborates to research and develop multi band wavelength fiber optic transmission technology

    Recently, Fujitsu and KDDI research company have successfully developed a high-capacity multi band wavelength multiplexing transmission technology using installed optical fibers.The new technology of the two companies can transmit wavelengths beyond the C-band by using batch wavelength conversion and multi band amplification technology.Expanding transmission capacity in remote areasTwo companies h...

    2023-12-05
    See translation
  • Researchers treated MXene electrodes with lasers to improve lithium-ion battery performance

    Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have found that laser scribing or creating nanodots on battery electrodes can improve their storage capacity and stability. The method can be applied to an alternative electrode material called MXene.Lithium-ion batteries have multiple drawbacks in a wide range of applications, and researchers around ...

    2023-08-04
    See translation
  • Top management changes at Laser Photonics Corp., a US laser equipment manufacturer

    Recently, Laser Photonics Corp. (LPC), a Nasdaq listed equipment developer, announced that it has appointed John T. Armstrong as its new Executive Vice President. Before assuming his position at LPC, Armstrong served as Vice President of Astronics Test Systems, a subsidiary of Astronics Corporation, a global leader in advanced technology and products in critical mission areas such as aerospace a...

    2024-11-20
    See translation
  • Sweden's powerful laser system generates ultra short laser pulses

    For the first time, researchers at Umeå University, Sweden, have demonstrated the full capabilities of their large-scale laser facility. The team reports generating a combination of ultrashort laser pulses, extreme peak power, and precisely controlled waveforms that make it possible to explore the fastest processes in nature.Umeå’s laser is 11 m long and generates very short pulses László Vei...

    08-20
    See translation