English

2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

1194
2024-03-20 15:47:32
See translation

Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light intensity captured by cameras. Therefore, designing and developing new optical activation functions is crucial for achieving optical neural networks that utilize ambient light for computation.

In a paper published in Nature Communications, a research team led by Professor Duan Xiangfeng and Professor Aydogan Ozcan from the University of California, Los Angeles reported a new strategy using a photonic neuron array to achieve strong optical nonlinearity for broadband incoherent light at low light intensity.

Their devices are heterogeneous and integrated with two-dimensional transparent phototransistors and liquid crystal modulators. Under weak light irradiation, TPT has high electrical resistance, and most of the voltage drop occurs on TPT. LC is not disturbed and maintains transparency. However, at high input optical power, TPT becomes conductive, causing most of the voltage to drop on the LC layer, thereby cutting off optical transmission.

In their experimental demonstration, the designed photoelectric neuron allowed for nonlinear modulation of its own amplitude by spatially and temporally incoherent light in visible light wavelengths, with photon loss of only~20%. They created a 100x100 array of photoelectric neurons and exhibited strong nonlinear behavior under laser and white light irradiation.

The nonlinear photoelectric array is further integrated as part of the mobile phone based imaging system, used for intelligent reduction of glare, selective blocking of strong glare, and almost no attenuation of objects with weaker intensity in the imaging field of view.

Device modeling shows that the optical intensity threshold is very low, only 56 μ W/cm2 produces significant nonlinear response for optimized devices, and the energy consumption per photon activation is as low as 69 fJ.

This photoelectric neuron array can perform nonlinear self amplitude modulation on spatially incoherent light, with characteristics such as low light intensity threshold, strong nonlinear contrast, wide spectral response, fast speed, and low photon loss. For image processing and visual computing systems that do not rely on strong laser beams, this performance is very ideal.

In addition to intelligent glare reduction, the cascaded integration of photoelectric neuron arrays and linear diffraction optical processors can be used to construct nonlinear optical networks, which may be widely used in computational imaging and sensing, and also open the door to the design of new nonlinear optical processors that use ambient light.

Source: Laser Net

Related Recommendations
  • New EUV lithography technology is introduced: achieving significant cost reduction and efficiency improvement

    Recently, Professor Tsumoru Shintake from Okinawa University of Science and Technology (OIST) proposed a revolutionary extreme ultraviolet (EUV) lithography technology that not only surpasses the boundaries of existing semiconductor manufacturing, but also heralds a new chapter in the industry's future.This innovation significantly improves stability and maintainability, as its simplified design o...

    2024-08-07
    See translation
  • Strengthening the market position: LILA integrates ADAM Lasertechnik

    Laser Integration Laser Applikation (LILA) GmbH is taking over ADAM Lasertechnik on April 1, 2025 and will continue to run the company as part of an external succession plan. This means that not only the expertise but also the proven technology of 3D laser welding with wire feed will be retained.“We are delighted to have found an industry-experienced partner in LILA GmbH, who will continue the bus...

    03-13
    See translation
  • Marilli won the "2024 CES Innovation Award": Laser and optical taillights produce 1mm of light

    Marelli is a company specialized in the field of automotive lighting, which has won the prestigious "2024 CES Innovation Award Winner" for its revolutionary red laser and fiber optic taillight technology. This innovative solution, showcased at the 2024 Consumer Electronics Show, for the first time combines the functionality of red laser with taillights, opening up a new perspective for car design....

    2024-01-16
    See translation
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    See translation
  • New photonic nanocavities open up new fields of optical confinement

    In a significant leap in quantum nanophotonics, a team of European and Israeli physicists introduced a new type of polarized cavity and redefined the limits of light confinement. This groundbreaking work was detailed in a study published yesterday in Natural Materials, showcasing an unconventional photon confinement method that overcomes the traditional limitations of nanophotonics.For a long time...

    2024-02-12
    See translation