English

2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

1143
2024-03-20 15:47:32
See translation

Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light intensity captured by cameras. Therefore, designing and developing new optical activation functions is crucial for achieving optical neural networks that utilize ambient light for computation.

In a paper published in Nature Communications, a research team led by Professor Duan Xiangfeng and Professor Aydogan Ozcan from the University of California, Los Angeles reported a new strategy using a photonic neuron array to achieve strong optical nonlinearity for broadband incoherent light at low light intensity.

Their devices are heterogeneous and integrated with two-dimensional transparent phototransistors and liquid crystal modulators. Under weak light irradiation, TPT has high electrical resistance, and most of the voltage drop occurs on TPT. LC is not disturbed and maintains transparency. However, at high input optical power, TPT becomes conductive, causing most of the voltage to drop on the LC layer, thereby cutting off optical transmission.

In their experimental demonstration, the designed photoelectric neuron allowed for nonlinear modulation of its own amplitude by spatially and temporally incoherent light in visible light wavelengths, with photon loss of only~20%. They created a 100x100 array of photoelectric neurons and exhibited strong nonlinear behavior under laser and white light irradiation.

The nonlinear photoelectric array is further integrated as part of the mobile phone based imaging system, used for intelligent reduction of glare, selective blocking of strong glare, and almost no attenuation of objects with weaker intensity in the imaging field of view.

Device modeling shows that the optical intensity threshold is very low, only 56 μ W/cm2 produces significant nonlinear response for optimized devices, and the energy consumption per photon activation is as low as 69 fJ.

This photoelectric neuron array can perform nonlinear self amplitude modulation on spatially incoherent light, with characteristics such as low light intensity threshold, strong nonlinear contrast, wide spectral response, fast speed, and low photon loss. For image processing and visual computing systems that do not rely on strong laser beams, this performance is very ideal.

In addition to intelligent glare reduction, the cascaded integration of photoelectric neuron arrays and linear diffraction optical processors can be used to construct nonlinear optical networks, which may be widely used in computational imaging and sensing, and also open the door to the design of new nonlinear optical processors that use ambient light.

Source: Laser Net

Related Recommendations
  • Samsung Heavy Industries Developing a Laser High Speed Welding Robot for Liquefied Natural Gas Ships

    South Korea's Samsung Heavy Industry announced on Thursday that it has developed the first laser high-speed welding robot in the maritime field, aimed at significantly improving the construction efficiency of liquefied natural gas (LNG) transport ships.This new technology is specifically designed for rapid welding of thin film panels used in cargo compartments of liquefied natural gas transport sh...

    2023-09-22
    See translation
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    The femtosecond laser emits ultra short optical pulses with a duration of less than one picosecond, reaching the femtosecond level (1fs=10-15s). The characteristics of femtosecond laser are extremely short pulse width and high peak intensity.Ultra short pulse trains can minimize residual heat, ensure precise material processing, and minimize incidental damage. Its high peak intensity can induce no...

    2024-04-02
    See translation
  • How to precisely control the cavity length of gallium nitride based vertical cavity surface emitting lasers?

    Gallium nitride (GaN) vertical cavity surface emitting laser (VCSEL) is a semiconductor laser diode with broad application prospects in various fields such as adaptive headlights, retinal scanning displays, nursing point testing systems, and high-speed visible light communication systems. Their high efficiency and low manufacturing costs make them particularly attractive in these applications.Gall...

    2024-06-12
    See translation
  • Developing nanocavities for enhancing nanoscale lasers and LEDs

    As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.In the journal Optical Materi...

    2024-01-29
    See translation
  • The Linac Coherent Light Source II X-ray Laser in the United States has completed over a decade of upgrading and emitted the first X-ray with a record breaking brightness

    According to reports, the Linac Coherent Light Source II (LCLS-II) X-ray laser at the Stanford SLAC National Accelerator Laboratory in the United States has just completed an upgrade that took more than a decade. After a facelift, it has become the world's brightest X-ray facility and emitted the first record breaking X-ray, allowing researchers to record the behavior of atoms and molecules in bio...

    2023-09-20
    See translation