English

The research team establishes synthetic dimensional dynamics to manipulate light

1163
2024-03-20 15:57:41
See translation

In the field of physics, the synthetic dimension has become one of the forefront of active research, providing a way to explore phenomena in high-dimensional space, surpassing our traditional 3D geometric space. This concept has attracted great attention, especially in the field of topological photonics, as it has the potential to unlock rich physics that traditional dimensions cannot reach.

Researchers have proposed various theoretical frameworks to study and implement SDs, aiming to utilize phenomena such as synthetic gauge fields, quantum Hall physics, discrete solitons, and four-dimensional or higher dimensional topological phase transitions. These suggestions may lead to a new fundamental understanding of physics.

One of the main challenges in traditional three-dimensional space is to experimentally achieve complex lattice structures with specific coupling. SD provides a solution that provides a more accessible platform for creating complex resonator networks with anisotropic, long-range, or dissipative coupling. This ability has led to groundbreaking demonstrations of non Hermitian topological entanglement, parity check time symmetry, and other phenomena.

Various parameters or degrees of freedom in the system, such as frequency mode, spatial mode, and orbital angular momentum, can be used to construct SD and are expected to be applied in various fields, from optical communication to topological insulator lasers.

A key goal in this field is to build a "utopian" resonator network where any pair of modes can be coupled in a controlled manner. To achieve this goal, precise mode manipulation is required in the photon system, providing a way to enhance data transmission, energy collection efficiency, and laser array radiation.

Now, as reported in Advanced Photonics, an international research team has created customizable waveguide arrays to establish synthetic modal dimensions. This advancement allows for effective control of light in photonic systems without the need for complex additional features such as nonlinearity or non closure.

Professor Chen Zhigang from Nankai University pointed out that the ability to adjust different light modes within the system takes us one step closer to achieving a 'utopian' network, where all experimental parameters are completely controllable.

In their work, researchers modulated perturbations of propagation that matched the differences between different light modes. To this end, they used artificial neural networks to design waveguide arrays in real space. After training, artificial neural networks can create waveguide settings with the desired mode patterns. These tests help reveal how light propagates and is limited within the array.

Finally, the researchers demonstrated the use of artificial neural networks to design a special type of photonic lattice structure called Su Schrieffer Heeger lattice. This lattice has specific functions and can topologically control the light of the entire system. This allows them to change the volume mode of light propagation and demonstrate the unique characteristics of their synthesized size.

The impact of this work is enormous. By fine-tuning the waveguide distance and frequency, researchers aim to optimize the design and manufacturing of integrated photonic devices.

Professor Hrvoje Buljan from the University of Zagreb said, "In addition to photonics, this work also provides a glimpse into geometrically difficult physics. It brings broad prospects for applications ranging from mode lasers to quantum optics and data transmission.".

Chen and Buljan both pointed out that the interaction between topological photonics driven by artificial neural networks and synthetic dimension photonics has opened up new possibilities for discovery, which may lead to unprecedented material and device applications.

Source: Laser Net

Related Recommendations
  • MedWorld Advisors acquires stakes in two companies to establish MedTech Laser Group

    Recently, MedWorld Advisors, an internationally renowned healthcare M&A consulting firm, is pleased to announce the establishment of a new medical laser company, MedTech Laser Group, by acquiring shares in two similar companies.The birth of MedTech Laser Group originated from A. in Nuremberg, Germany R. C Laser GmbH and G. from Caesarea, Israel (adjacent to Tel Aviv) N. The successful acquisit...

    2024-08-12
    See translation
  • Munich Shanghai Light Expo and Light Academic Publishing Center further strengthen cooperation

    In November 2024, based on the mutual trust and cooperation over the past years, the Munich Shanghai Optical Expo and the Light Academic Publishing Center of the Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences (hereinafter referred to as the "Light Center") reached a consensus on further strategic development as they ushered in the year of disruptive sci...

    2024-12-05
    See translation
  • TRUMPF helps upgrade the automation of 3D laser processing for automotive thermoforming

    (Dechengen, Germany, March 24, 2025) - TRUMPF Group in Germany has now provided end customers with a fully automated one-stop solution for laser processing systems. With this solution, customers can not only shorten the production cycle, but also effectively reduce the cost of 3D laser material processing. Our laser equipment has excellent production efficiency. Now, through the automation upgrade...

    04-02
    See translation
  • The Laser Industry Shines at the Expo, showcasing the country's key weapons and disruptive new products

    The China International Industrial Expo is an important window and economic and trade exchange and cooperation platform for China's industrial sector to the world, as well as a window for the world to understand the current development status of China's manufacturing industry. It is understood that the scale, energy level, and number of new exhibits of this year's Industrial Expo are all the highe...

    2023-09-23
    See translation
  • LOTMAXX Announces the Launch of a Multifunctional 3D Printer with Laser Cutting Function

    LOTMAXX has announced the launch of the ET model, a new type of 3D printer that can also be used as a laser cutting machine. According to the manufacturer, the core component is a fast direct extruder with a printing speed of up to 500 millimeters per second.LOTMAXX ET features an all metal casing with a printing volume of 250 x 250 x 265 mm. According to the announcement, as a special feature, th...

    2023-11-09
    See translation