English

Laser induced magnetic generation of non-magnetic materials at room temperature helps to develop faster and more energy-efficient information transmission and storage technologies

205
2024-06-03 14:38:18
See translation

Researchers from the University of Stockholm in Sweden, the Nordic Institute for Theoretical Physics, and the University of Cafoscari in Venice, Italy have successfully demonstrated for the first time how lasers induce quantum behavior at room temperature and make non-magnetic materials magnetic. This breakthrough is expected to pave the way for faster and more energy-efficient computers, information transmission, and data storage. The study was published in the latest issue of the journal Nature.

The research team placed a quantum material strontium titanate in a short and intense laser beam with special wavelength and polarization, generating induced magnetism. This method allows light to move atoms and electrons in the material in a circular motion, generating an electric current and making it magnetic like a refrigerator magnet.

Researchers have achieved this by developing a new far-infrared light source. This light source has polarization in the shape of a bottle opener. This is the first time they have been able to induce and clearly see how materials become magnetic at room temperature in an experiment.

Magnets are usually made of metal, and new methods allow for the use of many insulators to manufacture magnetic materials. This breakthrough is expected to be widely applied in various information technologies, opening the door to the development of ultrafast magnetic switches, information transmission and data storage, as well as faster and more energy-efficient computers.

The research results have been replicated in several other laboratories. A paper in the same issue of Nature suggests that this method can be used to write and store magnetic information, opening a new chapter in the design of new materials using light.

The researchers are in the laboratory of Stockholm University. Image source: Magnus Bergstrom/Knut and Alice Wallenberg Foundation

Source: Science and Technology Daily

Related Recommendations
  • BluGlass received its first order α GaN DFB laser

    Global semiconductor developer BluGlass Limited has received its first α Purchase order for gallium nitride distributed feedback laser.This client is a pioneer in photon and fiber laser technology and will use BluGlass's blue prototype DFB laser to develop cutting-edge defense, aviation, and scientific applications.Quantum sensing, navigation, and computing applications are driving a huge de...

    2024-01-10
    See translation
  • Entangled photon pairs generated by quantum light sources can be used for quantum computing and cryptography

    A new device composed of semiconductor rings generates pairs of entangled photons, which can be used in photon quantum processors.Quantum light sources generate entangled photon pairs, which can be used in quantum computing and cryptography. A new experiment has demonstrated a quantum light source made from semiconductor gallium nitride. This material provides a multifunctional platform for devic...

    2024-03-30
    See translation
  • Coherent lasers will help expand the scale of fusion tokamaks

    Coherent company's excimer lasers can be more widely used in fusion reactor applications, after the US based photonics giant signed a "letter of intent" with Japan's Faraday 1867 Holdings.Faraday 1867, headquartered in Kanagawa Prefecture, is said to have become the world's leading manufacturer of high-temperature superconducting (HTS) tape through its subsidiary Faraday Japan factory.This tape is...

    2023-10-11
    See translation
  • Research progress on machine learning for defect detection and prediction in laser cladding process

    It is reported that researchers from Foshan University, the Institute of Chemical Defense of the Academy of Military Sciences, the National Defense Technology Key Laboratory of Equipment Remanufacturing Technology of the Armored Forces Academy, and Chengdu State owned Jinjiang Machinery Factory have summarized and reported the latest progress of machine learning in defect detection and prediction ...

    01-17
    See translation
  • BMW uses WAAM 3D printing to optimize derivative designs

    BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust...

    2024-04-13
    See translation