English

Researchers have discovered a new method to improve the resolution of laser processing

73
2024-03-28 13:52:54
See translation

Customized laser beams focused through transparent glass can generate a small dot inside the material. Researchers from Northeastern University have reported a method of using this small spot to improve laser material processing and increase processing resolution.


Their research results are published in the journal Optics Letters.

Laser processing, like drilling and cutting, is crucial in industries such as automobiles, semiconductors, and pharmaceuticals. The pulse width of an ultra short pulse laser source ranges from picoseconds to femtoseconds, and can be accurately processed in the range of micrometers to tens of micrometers. But recent progress requires smaller scales, below 100 nanometers, which is difficult to achieve with existing methods.

Researchers focus on laser beams with radial polarization, known as vector beams. The beam generates a longitudinal electric field at the focal point, resulting in a smaller spot than traditional beams.

Scientists have determined that this process has great potential in laser processing. However, one drawback is that due to the light refraction at the air material interface, the field weakens inside the material, thereby limiting its use.

"We overcame this by using oil immersion lenses to laser process glass substrates," exclaimed Yuichi Kozawa, Associate Professor at the Institute of Advanced Materials Multidisciplinary Research at Northeastern University and co-author of the paper. "Because the refractive indices of oil immersed and glass are almost the same, the light passing through them will not bend."

Further research on the behavior of radially polarized beams under circular focusing indicates that the longitudinal field is greatly enhanced. This enhancement is due to total reflection occurring at high convergence angles on the back between glass and air. By using a circularly polarized beam of light, Kozawa and his colleagues created a small focal point.

From there, they applied this method to processing glass surfaces with ultra short pulse laser beams. A single shot of the converted pulse on the back of the glass substrate will produce a hole with a diameter of 67 nanometers, approximately 1/16 of the wavelength of the laser beam.

"This breakthrough makes it possible to use enhanced longitudinal electric fields for direct material processing with higher accuracy," Kozawa added. "It provides a simple method to achieve processing scales below 100 nanometers and opens up new possibilities for laser nanoprocessing in various industries and scientific fields."

Source: Laser Net

Related Recommendations
  • Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

    A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use...

    2024-02-19
    See translation
  • New photonic nanocavities open up new fields of optical confinement

    In a significant leap in quantum nanophotonics, a team of European and Israeli physicists introduced a new type of polarized cavity and redefined the limits of light confinement. This groundbreaking work was detailed in a study published yesterday in Natural Materials, showcasing an unconventional photon confinement method that overcomes the traditional limitations of nanophotonics.For a long time...

    2024-02-12
    See translation
  • Leya Invents Next Generation Agricultural Blue Laser Weeding Technology

    Laudado&Associates LLC (L&A), an agricultural technology development company headquartered in California, announced the Autonomous Agricultural Solutions Conference held at FIRA Robotics&last week in Salinas, California.This patent pending technology is a completely new design, designed by L&A, aimed at maximizing the commercial feasibility of laser weeding and thinning. It utilize...

    2023-09-27
    See translation
  • Progress in the Study of Nonlinear Behavior of Platinum Selenide Induced by Strong Terahertz at Shanghai Optics and Machinery Institute

    Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the nonlinear behavior and mechanism of platinum selenide in terahertz band. The research team systematically studied the spectral and optical intensity characteristics of platinum selenide und...

    2024-05-23
    See translation
  • Scientists at Peking University invent ultra-thin optical crystals for next-generation laser technology

    BEIJING, Dec. 19 (Xinhua) -- A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology.This photo taken on Dec. 15, 2023 shows a Twist Boron Nitride (TBN) crystal placed on a piece of fused silica in Peking University, Beijing, capital of China. A team of Chinese rese...

    2023-12-20
    See translation