English

Launching the world's strongest laser at a cost of 320 million euros

1013
2024-04-03 18:05:29
See translation

   Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fields from medicine to basic physics and space.

   The high-tech center to which this laser belongs is located in Romania, mainly funded by the European Union, with a cost of 320 million euros, utilizing the invention of French scientists such as Gerald Muru.

   Scientists have been committed to manufacturing more powerful lasers. In the mid-1980s, the Muru team invented Chirped Pulse Amplification (CPA) technology, which can increase the power of lasers while maintaining their intensity. Its working principle is to stretch an ultra short laser pulse in time, amplify it, and then squeeze it together again to create the shortest and strongest laser pulse to date.

   Mulu was awarded the 2018 Nobel Prize in Physics for developing a method for producing high-intensity, ultra short light pulses. This technology is expected to be widely applied in fields such as nuclear physics and particle physics, medicine, etc. In the medical field, this technology has promoted the development of cataract and refractive surgery.

   Muru pointed out that they will start with a tiny glowing "seed" with minimal energy, which will be magnified millions of times. They will use these ultra-high voltage pulses to generate more compact and cheaper particle accelerators to destroy cancer cells. Other possible applications include processing nuclear waste by reducing its radioactive duration, cleaning up accumulated debris in space, and so on.

Related Recommendations
  • Which automotive parts can use laser soldering technology

    Laser soldering is widely used in the manufacturing of automotive parts. Here are some common automotive parts that can be welded using laser soldering:Automotive electronic control systemEngine Control Unit (ECU): The engine control unit is the "brain" of the car engine, which receives signals from various sensors and controls the operation of the engine based on these signals. Laser soldering ca...

    02-10
    See translation
  • Chinese researchers enhance perovskite lasers by suppressing energy loss

    Limiting Auger recombination enables “record” quasi-continuous wave laser output.For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that...

    08-25
    See translation
  • Shanghai Institute of Optics and Mechanics proposes a new solution for quartz glass as a visible light laser material

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on rare earth ions Dy3+doped quartz glass as a yellow laser material, and the relevant research results were published in the Journal of the American Ceramic Society as "Effect o...

    2024-06-05
    See translation
  • New super-resolution microscopy imaging technology: rapid imaging of neurons

    The research group led by Wang Kai from the Center for Excellence in Brain Science and Intelligent Technology of the Chinese Academy of Sciences has published a research paper titled "Super solution imaging of fast morphological dynamics of neurons in eating animals" online in Nature Methods. The team has developed a new type of super-resolution microscopy imaging technology, which solves the two ...

    2024-12-04
    See translation
  • The UK government plans £ 10.5 million to support laser wire feeding

    On the first day of the 2025 Paris Air Show, the UK government announced a £ 250 million investment to support sustainable aerospace programs, with £ 48.5 million earmarked for funding additive manufacturing projects led by Airbus and GKN Aerospace. Among them, £ 10.5 million will be injected into the GKN Integrated System Level Aerospace Structure Assembly (ISLAA) program, with the aim of utilizi...

    06-23
    See translation