English

Breaking the limits of optical imaging by processing trillions of frames per second

121
2024-04-08 15:40:00
See translation

Pursuing higher speed is not just exclusive to athletes. Researchers can also achieve such feats through their findings. The research results of Professor Liang Jinyang and his team from the National Institute of Science (INRS) have recently been published in the journal Nature Communications.

The team located at the INRS É nergie Mat é riaux T é l é communications research center has developed a new type of ultrafast camera system that can capture up to 156.3 trillion frames per second with astonishing accuracy. For the first time, a single ultra fast demagnetization of two-dimensional optical imaging has been achieved. This new device called SCARF (Scanning Aperture Real Time Femtosecond Photography) can capture transient absorption in semiconductors and ultrafast demagnetization of metal alloys. This new method will help advance the knowledge frontier in a wide range of fields such as modern physics, biology, chemistry, materials science, and engineering.

Professor Liang is renowned as a pioneer in the field of ultrafast imaging. In 2018, as a major developer, he made significant breakthroughs in this field, laying the foundation for the development of SCARF.

So far, ultrafast camera systems mainly use a frame by frame sequential capture method. They will obtain data through brief and repeated measurements, and then combine all the content to create a movie that reconstructs the observed motion.

Professor Liang Jinyang said, "However, this method can only be applied to inert samples or phenomena that occur in exactly the same way every time. Fragile samples, let alone non repeatable or ultrafast phenomena, cannot be observed with this method."

"For example, phenomena such as femtosecond laser ablation, interaction between shock waves and live cells, and optical chaos cannot be studied in this way," explained Liang Jinyang.

The first tool developed by Professor Liang helped fill this gap. The T-CUP (trillion frames per second compressed ultrafast photography) system is based on passive femtosecond imaging and can capture billions (1013) of frames per second. This is an important first step towards ultrafast, single shot real-time imaging.

SCARF has overcome these challenges. Its imaging method can scan the static coding aperture ultra fast without cutting the ultra fast phenomenon. This can provide a full sequence encoding rate of up to 156.3 THz for each pixel on cameras with charge coupled devices (CCD). These results can be obtained in both reflection and transmission modes at adjustable frame rates and spatial scales in a single attempt.

SCARF makes it possible to observe unique phenomena that are ultrafast, non repeatable, or difficult to reproduce, such as shock wave mechanics in living cells or substances. These advances may be used to develop better drugs and medical methods.

More importantly, SCARF promises to bring very attractive economic byproducts. Axis Photonique and Few Cycle have collaborated with Professor Liang's team to produce a saleable version of their patent pending discovery. This is an excellent opportunity for Quebec to consolidate its enviable position as a leader in photonics.

Source: Laser Net

Related Recommendations
  • Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

    In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.Scientists from the KTH Royal Institute of Technology in Stockholm have stated that co...

    2024-05-23
    See translation
  • Using a new type of ground laser to track space debris

    The Polish Space Research Center of the Celestial Geodynamics Observatory located in Borowitz near Poznan will enhance its capabilities with a new and powerful laser.The first task of this state-of-the-art device is to enable researchers to accurately track the trajectories of 300 previously identified space debris in no less than six months.Observatory Director Pawe ł Lejba emphasized the i...

    2024-03-14
    See translation
  • Laserline completes 70% equity acquisition of WBC Photonics

    Recently, Laserline, a leading semiconductor laser manufacturer in Germany, announced that it has completed the acquisition of a 70% stake in WBC Photonics, a Boston based laser technology expert, marking a significant strategic expansion for Laserline. Through this transaction, Laserline not only expands its product portfolio to include blue laser systems with excellent beam quality (better tha...

    2024-09-20
    See translation
  • The new chip opens the door to artificial intelligence computing at the speed of light

    Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.The design of a silicon photonic chip was the first to combine t...

    2024-02-18
    See translation
  • The estimated output value of the LiDAR market in 2029 is expected to reach 5.352 billion US dollars

    Market research firm TrendForce Consulting released an industry insight report today, stating that currently LiDAR is mainly used in the automotive market for passenger cars and unmanned taxis, while in the industrial market it supports applications such as robotics, factory automation, and logistics.The report points out that driven by Level 3 and more advanced auto drive system system and logist...

    01-22
    See translation