English

Amazemet uses Siemens Xcelerator software for scaling metal 3D printing

1071
2024-04-18 17:04:51
See translation

Polish metal 3D printing company Amazemet uses the Xcelerator software combination from industrial manufacturing company Siemens.
The spin off company of Warsaw University of Technology is using Siemens workflow management software to develop its metal powder atomizer and 3D printing post-processing equipment.

Amazemet was founded in 2016, and its ultrasonic atomization device is capable of producing metal powders internally for additive manufacturing.
In the past four years, the company has expanded its business scale and strengthened its team. Therefore, it attempts to centralize its data to prevent costly errors, such as sending incorrect designs into production.

"That's why we chose Siemens Xcelerator for digitization to simplify the constantly growing data in our design and production technology processes," said Amazemet CEO Ł Ukasz Ż Rodowski explained. The Amazemet engineering team is utilizing Siemens Xcelerator software to help push its products to the market and further expand the company's operational scale.

"The Siemens Xcelerator product portfolio has improved our efficiency, providing a single platform for managing documents, product development, and manufacturing processes. Its scalability supports our continuous growth, simplifies document management, accelerates design, and eliminates scalability barriers." Ż Rodowski added.

Amazemet adopts Siemens Xcelerator
Amazement is using Siemens NX software and Teamcenter X software, both of which are part of the Xcelerator product portfolio. These platforms are used to assist in the development of post-processing technologies, including inFurner high vacuum furnaces.

This furnace can be heated to 1600 ℃ and is designed to provide reliable heat treatment for 3D printed metal parts. This is an important step in metal additive manufacturing, which is crucial for improving mechanical properties such as hardness, strength, and fatigue resistance.

Siemens NX is a computer-aided design/manufacturing (CAD/CAM) software designed for the design, analysis, and manufacturing processes in 3D printing. NX CAD allows designers to create 3D models, analyze product design feasibility, and share data to accelerate production cycles. The platform also enables users to generate lattice structures, perform construction simulations, and prepare 3D printed parts.

Ż Rodowski stated that NX software significantly shortens product development time. It also improves the stability and reliability of rePowder, and the company's ultrasonic atomizer can produce powdered metal raw materials from any alloy material.

Amazemet also utilizes Teamcenter X to implement cloud based product lifecycle management and collaboration tools. According to reports, this ensures that all files and service documents of the company can be accessed anytime, anywhere.

Mariusz Zabielski, Vice President and Regional Manager of Siemens Digital Industrial Software for Poland and the Czech Republic, believes that accessibility challenges still need to be overcome before additive manufacturing becomes more widely adopted.

"I am pleased to see a Polish company pushing new technologies to the market and enhancing Poland's position as a truly innovative melting pot in the field of additive manufacturing," Zabielski said.

"Amazemet is another perfect example of how innovators and pioneers in various industries adopt the Siemens Xcelerator industry software portfolio to digitally transform and expand their business, and fulfill their commitment to widely adopting metal additive manufacturing."

Using software to accelerate metal 3D printing
Siemens Xcelerator suite is not the only software aimed at optimizing metal 3D printing. At the Additive Manufacturing User Group (AMUG) 2024 meeting held in Chicago last month, Belgian 3D printing company Materialise launched its e-Stage for Metal+software.

This product uses physics based modeling to simplify data and prepare for laser powder bed melting (LPBF) 3D printing, and automatically generates support structures.

The e-stage of Metal+aims to improve the accessibility of metal additive manufacturing and predict areas that are prone to deformation during the 3D printing process. Then generate support to alleviate this situation, prevent 3D printing failures, and simplify post-processing. According to Materialise, this shortens the learning curve of metal 3D printing and promotes its adoption in industrial manufacturing applications.

Last year, 1000 Kelvin, a software company headquartered in Berlin, announced the full commercialization of AMAIZE AI driver software for metal 3D printing. AMAIZE uses artificial intelligence (AI) to create 3D printing formulas, ensuring accurate 3D printing with just one attempt.
After uploading the file to the AMAIZE cloud, the software will analyze the parts and automatically solve any thermal mechanical problems by optimizing scanning strategies and process parameters. This eliminates the need for expensive component simulation software and minimizes the number of physical iterations.

Source: Laser Net

Related Recommendations
  • Osram's new laser headlights "Yutianba" are unveiled

    Recently, OSRAM, a well-known global automotive lighting brand, announced the launch of its modified new laser headlights - the Yutianba laser headlights. Laser headlights were once regarded by many car companies as the "successor" of LED headlights, and German century old automotive lighting expert Osram is precisely the pioneer of laser light sources for automotive headlights. Since the 2014 BMW...

    2024-05-06
    See translation
  • Marvel Fusion received an additional € 50 million in Series B funding

    Recently, Marvel Fusion, which focuses on developing laser fusion energy systems, announced that the company has received an additional € 50 million in Series B funding. This latest investment is provided by EQT Venture Capital and Siemens Energy, and is also the first investment of the European Innovation Council (EIC) fund in fusion energy. In addition to the 63 million euros investment announce...

    04-08
    See translation
  • The Influence of Laser Beam Intensity Distribution on Lock Hole Geometry and Process Stability under Green Laser Radiation

    Researchers from the University of Aveiro in Portugal and the School of Engineering at Porto Institute of Technology (ISEP) in Portugal reported a study on the influence of laser beam intensity distribution on the geometric shape and process stability of lock holes under green laser radiation. The relevant paper titled "Influence of Laser Beam Intensity Distribution on Keyhole Geometry and Process...

    03-26
    See translation
  • The L4 Aton laser at Eli Beamlines achieves an output power of 5 petawatts

    According to the Extreme Light Infrastructure (ELI), the L4 ATON kilojoule laser at the ELI beamline facility in Dolní Břežany near Prague, Czech Republic, has achieved peak powers exceeding 5 petawatts (10¹⁵ W).The research institute stated: “This confirms that L4 can operate safely and reliably at this energy level, which is crucial for scaling up power and preparing for scientific experiments.”...

    10-28
    See translation
  • Aerosol jet printing can completely change the manufacturing of microfluidic devices

    Surface acoustic wave technology is renowned for its high precision and fast driving, which is crucial for microfluidics and affects a wide range of research fields. However, traditional manufacturing methods are time-consuming, complex, and require expensive cleanroom facilities.A new method overcomes these limitations by utilizing aerosol jet printing to create customized equipment with various ...

    2024-02-02
    See translation