English

Shanghai Optics and Machinery Institute has made progress in femtosecond fiber lasers based on twisted Sagnac interferometer mode locking

1191
2024-04-22 16:17:22
See translation

Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a torsional Sagnac interferometer and applied it to the fiber laser system, realizing mode locking self starting and pulse shaping. The relevant research achievements were published in the Journal of Lightwave Technology under the title of "Femtosecond fiber laser mode locked by a twisted Sagnac interferometer".

Fiber optic Sagnac interferometers have been widely used in fields such as navigation, sensing, and lasers. The common path structure of Sagnac interferometer has both advantages and disadvantages. One is that precise length control is not required between optical paths, which is crucial for robust interferometric measurements. The second issue is that the transmittance of the Sagnac fiber loop is fixed and cannot be freely tuned. 
Therefore, traditional nine cavity mode-locked fiber lasers based on Sagnac fiber interference loops face the problem of inflexible mode locking.

In this study, researchers proposed a twisted Sagnac interferometer with continuously adjustable phase bias. By introducing 90 ° fusion in the Sagnac loop and utilizing the birefringence of polarization maintaining fibers, linear phase shift differences in clockwise and counterclockwise directions can be introduced and adjusted. When applied in a nine cavity fiber laser system, setting an appropriate transmittance can achieve mode locking self start. The experimental results show that by stretching the fiber to change the linear phase shift difference, the laser can achieve switching between different operating modes. By optimizing the phase shift difference, laser pulses with a spectral bandwidth of 31nm and a pulse duration of 160 fs can be generated at a repetition frequency of 24.5 MHz.

This study achieved real-time continuous adjustment of the transmittance of Sagnac fiber optic interference ring, providing greater flexibility and control for the nine cavity mode-locked laser, and improving its application prospects in optical metrology and sensing fields.
This work was supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences, the National Natural Science Foundation of China, and the Shanghai Natural Science Foundation.

Figure 1 Schematic diagram of a twisted fiber Sagnac interferometer.

Figure 2: Experimental setup diagram of femtosecond fiber laser based on twisted fiber Sagnac interferometer mode locking.

Figure 3 Spectral tuning and time-domain characteristics under different clockwise and counterclockwise linear phase shift differences and nonlinear phase shift differences.

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Related Recommendations
  • The most advanced gas sensing laser technology will be exhibited at the upcoming CEM 2023 exhibition in Barcelona

    Nanoplus Nanosystems and Technologies GmbH is an ISO 9001:14001 certified supplier and one of the world's most famous laser manufacturers for gas sensing applications. The cornerstone of nanoplus's success is its unique patented method of manufacturing DFB laser sources. Nanoplus celebrates its 25th anniversary this year and separated from the University of Vilzburg in 1998.Among the outstanding i...

    2023-09-14
    See translation
  • Seyond plans to land on the Hong Kong Stock Exchange in De SPAC mode

    Recently, TechStar Acquisition Corporation (07855. HK), a special purpose acquisition company, announced that Seyond, the successor company of the special purpose acquisition transaction, has submitted a new listing application. Seyond plans to land on the Hong Kong Stock Exchange under the De SPAC model. This means that Seyond is only one step away from going public through a backdoor listing. If...

    02-14
    See translation
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    See translation
  • Set a new world record! Optical crystals as thin as cicada wings increase energy efficiency by over a hundred times

    On quartz sheets, the angular rhombic boron nitride crystals with a thickness of only 1 to 3 microns are as thin as cicada wings, but their energy efficiency is 100 to 10000 times higher than traditional optical crystals. At the opening ceremony of the 2024 Zhongguancun Forum Annual Conference held on April 25th, the world's thinnest known optical crystal was listed as one of the top ten technolog...

    2024-04-26
    See translation
  • Laser ablation helps to trace the origin of medieval metals

    Archaeologists have long wondered why the people of Anglo Saxon England began using more silver coins and fewer gold coins between 660 and 750 AD. Researchers in Europe now say they have developed a method to help find the answer. This technology combines laser ablation with traditional trace element analysis to match the isotopic abundance of silver bars in coins with known sources of metal ores ...

    2024-04-13
    See translation