English

The research team has solved decades long challenges in the field of microscopy

470
2024-04-27 14:34:15
See translation

When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.

This interference can cause the measured sample depth to be smaller than the actual depth. Therefore, the sample appears to have flattened.
"This problem has a long history, and since the 1980s, some theories have been proposed to determine a correction coefficient for determining depth. However, all of these theories assume that this coefficient is constant and independent of sample depth. Associate Professor Jacob Hoogenboom of Delft University of Technology explained that although later Nobel laureate Stefan Hell pointed out in the 1990s that this proportion may be related to depth, this situation still occurred.".

Sergey Loginov, a former postdoctoral fellow at Delft University of Technology, has now demonstrated through calculations and mathematical models that samples do exhibit stronger flattening near the lens than away from it. Doctoral student Daan Boltje and postdoctoral researcher Ernest van der Wee subsequently confirmed in the laboratory that the correction factor is related to depth.

This research result is published in the journal Optica.
The last author, Ernest Van der Wee, said, "We have compiled the results into a network tool and software that is provided with the article. With these tools, anyone can determine precise correction factors for their experiments.".

Researcher Daan Boltje said, "Thanks in part to our computational tools, we can now very accurately cut out proteins and their surrounding environment from biological systems, and determine their structure using an electron microscope. This type of microscopic examination is very complex, time-consuming, and incredibly expensive. Therefore, ensuring that the correct structure is observed is crucial."

Researcher Daan Boltje said, "With our more precise depth measurements, we only need to spend less time and money on samples that miss biological targets. Ultimately, we can study more relevant proteins and biological structures. Determining the precise structure of proteins in biological systems is crucial for understanding and ultimately preventing abnormalities and diseases."“

In the provided network tools, you can fill in the relevant details of the experiment, such as refractive index, aperture angle of the objective lens, and wavelength of the light used. Then, the tool will display a depth related scaling factor curve. You can also export this data for your own use. In addition, you can also combine the results with the results of existing theories to draw.

Source: Physicist Organization Network

Related Recommendations
  • Dutch satellite instruments have achieved milestone achievements in transmitting laser data to Earth

    TNO wrote that this is the first time Dutch technology has been used to send data from a satellite to a ground station press release on Earth. This technology uses invisible laser signals to achieve faster and safer data flow compared to ubiquitous communication radio frequencies.Kees Buijsrogge, Director of TNO Space, said, "This critical milestone marks a significant achievement for the Netherla...

    2024-01-25
    See translation
  • Micro laser opens the door to chip size sensors

    The new device is a frequency comb - a special type of laser that can generate multiple wavelengths of light, each with a fixed frequency interval. On the spectrogram, it looks a bit like the teeth of a comb. In approximately a quarter century since their first development, these "cursor rulers" have completely transformed various high-precision measurements from timing to molecular detection. In ...

    2024-03-13
    See translation
  • Laser photonics helps simplify maintenance processes in the mining industry

    Laser Photonics Corporation (LPC) is a leading global developer of industrial laser systems for cleaning and other material processing applications, emphasizing the critical applications of its industrial laser cleaning systems in the mining industry.Laser Photonics provides a user-friendly, ethical, cost-effective, and time-saving solution for professionals in the mining industry to maintain heav...

    2024-06-14
    See translation
  • Innoviz Technologies, a publicly listed laser radar company, has laid off approximately 9% of its workforce

    On February 5, 2025, Innoviz Technologies, an Israeli laser radar listed company, announced operational optimization measures to extend the duration of the company's cash reserve usage and accelerate profitability and free cash flow generation. To maximize efficiency, the company will reduce investment in developing mature areas. These measures will result in a reduction of approximately 9% in the...

    02-07
    See translation
  • Polarization polariton topology pointing towards a new type of laser

    Semi light, partially matter quasi particles, known as excitons polaritons, can easily bypass obstacles and condense into a single coherent state - both of which are characteristics of topological insulators. Researchers from the United States and China have developed a new technology to manufacture microcavities from chloride based halide perovskites. They expect this work to lead to a new type o...

    2024-05-30
    See translation