English

Advanced OPA enhances the energy of attosecond imaging ultra short pulses

100
2024-05-11 16:03:34
See translation

The attosecond level ultra short laser pulse provides a powerful method for detecting and imaging ultra short processes, such as the motion of electrons in atoms and molecules.

Although ultra short laser pulses can be generated, generating ultra short and high-energy pulses is a continuous challenge. In order to expand the photon energy, photon flux, and continuous bandwidth of isolated attosecond pulses, it is necessary to develop stable, high-energy, and long wavelength single period laser sources.

Researchers at the RIKEN Advanced Photonics Center have developed a method for generating high-energy single cycle MIR pulses. This method is called Advanced Dual Chirp Optical Parametric Amplification (Advanced DC-OPA), which increases the energy of a single cycle laser pulse by 50 times and can be used to generate extremely short pulses with a peak power of 6 terawatts.

"At present, the output energy of attosecond lasers is extremely low," said researcher Eiji Takahashi. "If they are to be used as light sources for a wide range of fields, increasing their output energy is crucial."

Researchers used two types of nonlinear crystals to develop advanced DC-OPA - bismuth triborate oxide (BiB3O6) and lithium niobate doped with magnesium oxide (MgO: LiNbO3). The crystal magnifies the complementary regions of the spectrum.

Takahashi said, "The advanced DC-OPA for amplifying single cycle laser pulses is very simple, based only on a combination of two nonlinear crystals." "What surprised me was that such a simple concept provided a new amplification technology and brought breakthroughs in the development of high-energy, ultrafast lasers."

The damage threshold of nonlinear crystals limits the energy scalability of OPA under high pulse energy. Takahashi said, "The biggest bottleneck in the development of high-energy and ultrafast infrared laser sources is the lack of effective methods for directly amplifying single cycle laser pulses." "This bottleneck results in a millijoule barrier in the energy of single cycle laser pulses."

The advanced DC-OPA method overcomes the bottleneck of pulse energy scalability using single cycle IR/MIR laser systems.

The team expects that advanced DC-OPA methods will drive the development of attosecond laser technology forward. Takahashi said, "We have successfully developed a new laser amplification method that can increase the intensity of a single cycle laser pulse to terawatt level peak power." "This is undoubtedly a significant leap in the development of high-power attosecond lasers."

Due to the excellent energy scalability of the advanced DC-OPA method, laser pulses with higher pulse energy and fewer pulse duration cycles can be achieved based on different crystal combinations and higher pump energy. The extension of pulse energy can promote high-throughput detection conditions in strong field physics research.

Takahashi believes that by capturing the motion of electrons, attosecond lasers have made significant contributions to fundamental science. "They are expected to be used in a wide range of fields, including observing biological cells, developing new materials, and diagnosing medical conditions," he said.

The ultimate goal of Takahashi is to exceed the speed of the attosecond laser and generate shorter pulses. "By combining a single period laser with higher-order nonlinear optical effects, it is possible to generate optical pulses with a time width of Ze seconds (one Ze second=10-21 seconds)," he said. "My long-term goal is to open the door to research on Zeosecond lasers and open up the next generation of ultra short lasers after Atosecond lasers."

Source: Laser Net

Related Recommendations
  • LASER CHINA 2025 on-the-Spot, What New Technologies are Trending This Year?

    Every year, Shanghai is lit up with a “feast of light”, that is LASER World of PHOTONICS CHINA, which has lasted for 20 years and become an arena for global photoelectric enterprises to display and compete, instead of just an exhibition hall of devices. Chanelink team visited all these halls for laser technology, thoroughly learning the cutting-edge trends in photoelectric industry.As a technical...

    03-19
    See translation
  • Tsinghua University has made progress in the field of magnetic field and laser composite processing

    The National Key Laboratory of Interface Science and Technology for High end Equipment at Tsinghua University has made progress in the field of magnetic field and laser composite processing - magnetic field assisted laser shock strengthening of Ti6Al4V alloy. The relevant research was published as a cover article titled "Magnetic Field Assisted Laser Shock Peening of Ti6Al4V Alloy" in the journal ...

    2023-09-16
    See translation
  • MIT researchers have demonstrated a novel chip based resin 3D printer

    Researchers from the Massachusetts Institute of Technology and the University of Texas at Austin showcased the first chip based resin 3D printer. Their concept verification tool consists of a millimeter sized photon chip that emits a programmable beam of light into resin holes, which solidify into a solid structure when exposed to light.The prototype processor does not have mobile components, but ...

    2024-06-17
    See translation
  • The Japanese team uses laser technology for ice core sampling to accurately study climate change

    Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast ...

    2023-09-23
    See translation
  • Coherent Axon laser won the 2023 Business Innovation Award from the British Physical Society

    One of the laser leaders in the field of life sciences, Coherent Gao Yi (New York Stock Exchange: COHR), recently announced that its Axon laser won the 2023 Business Innovation Award at the awards ceremony held by the British Physical Society on October 30th.Dr. Vincent D. Mattera, Jr., Chairman and CEO of Coherent, stated that, Coherent, especially our team at the Center for Excellence in Ultrafa...

    2023-11-03
    See translation