English

Shanghai Optics and Machinery Institute has made new progress in the research of high repetition frequency and high energy medium wave infrared lasers

1269
2024-05-22 14:41:53
See translation

Recently, the research team of Aerospace Laser Technology and System Department of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, based on 2.1 μ M Ho: YAG main oscillator amplifier pumped ZGP crystal, achieving high energy 3-5 at kHz repetition frequency μ The output of M medium wave infrared laser and further research on beam quality improvement technology for high-energy medium wave infrared laser. The relevant research results have been published in the Journal of Lightwave Technology and Laser Physics Letters, respectively, titled "High Repetition Rate 52-mJ Mid Infrared Laser Source Based on ZnGeP2 MOPA System" and "High repetition frequency, high energy mid wave infrared ZnGeP2 MOPA system".

High repetition rate, large pulse energy tunable 3-5 μ The mid infrared laser has important significance in many fields such as atmospheric monitoring. Among the methods that can achieve medium wave infrared laser output, nonlinear frequency conversion technology has advantages such as all solid-state, wide wavelength tuning range, and less heat generation. Due to the damage threshold of solid materials, the current pulse energy of medium wave infrared lasers at the kilohertz repetition rate level is only~10mJ, which is difficult to meet the needs of application fields.

In this study, researchers compensated for the crystal thermal lens and thermally induced birefringence depolarization effect through optical and structural design, and ultimately achieved high polarization 2.1 with a repetition frequency of 2kHz and an average power of~200W using the Ho: YAG MOPA system μ M laser output. By using its pumped ZGP optical parametric oscillator and amplifier, a 3-5 pulse repetition rate of 2kHz, average power of 103.9W, pulse energy of~52mJ, and pulse width of 18.3ns were achieved μ M produces mid infrared laser output, but there is a problem of poor beam quality (M2=10) in mid wave infrared laser. By studying techniques such as pump allocation ratio, single wavelength injection, and amplifier seed and pump divergence angle matching, the beam quality M2<4 was achieved at an average power of 53.3 W and a pulse energy of 26.7 mJ for medium wave infrared lasers. This research work has achieved high brightness, high repetition rate, and high-energy medium wave infrared laser output, enhancing the application prospects of this type of laser.

This work is supported by the National Natural Science Foundation of China.

Figure 1 Structure diagram of high repetition rate and high energy medium wave infrared laser device


Figure 2 ZGP OPA Output Power and Pulse Width


Figure 3 Medium wave infrared laser spectrum
Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Related Recommendations
  • IPG Photonics announces 2024 financial loss of $162 million

    On February 11th, global industrial fiber laser giant IPG Photonics announced its financial performance for the fourth quarter and full year of 2024. Annual sales have fallen below the $1 billion mark for the first time, with a year-on-year decline of 24% and a pre tax loss of up to $162 million. As an industry leader, IPG's financial report not only reflects the deep adjustment faced by the ind...

    02-13
    See translation
  • Shanghai Optics and Machinery Institute has made new progress in laser welding of new high-temperature nickel based alloys

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Machinery has made new progress in laser welding of new structural materials for high-temperature molten salts. The research team used a high-power laser for the first time to achieve defect free welding of nick...

    2023-09-01
    See translation
  • The application of laser technology in the automated production line of energy storage/power battery PACK

    Lithium batteries are highly favored in the fields of 3C digital and new energy vehicles due to their high energy density, environmental characteristics, and fast charging and discharging. Welding, as a crucial link in the manufacturing process of lithium batteries, has a decisive impact on battery performance and quality. Laser welding technology is increasingly playing an important role in the l...

    2023-12-18
    See translation
  • The University of Rochester has received nearly $18 million to build the world's highest power laser system

    After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).EP-OPAL is a new fac...

    2023-09-28
    See translation
  • Semiconductor lasers will support both TE and TM modes

    Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:A chip without ridge waveguide design an...

    2023-10-20
    See translation