English

Shanghai Optics and Machinery Institute has made new progress in the research of high repetition frequency and high energy medium wave infrared lasers

1075
2024-05-22 14:41:53
See translation

Recently, the research team of Aerospace Laser Technology and System Department of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, based on 2.1 μ M Ho: YAG main oscillator amplifier pumped ZGP crystal, achieving high energy 3-5 at kHz repetition frequency μ The output of M medium wave infrared laser and further research on beam quality improvement technology for high-energy medium wave infrared laser. The relevant research results have been published in the Journal of Lightwave Technology and Laser Physics Letters, respectively, titled "High Repetition Rate 52-mJ Mid Infrared Laser Source Based on ZnGeP2 MOPA System" and "High repetition frequency, high energy mid wave infrared ZnGeP2 MOPA system".

High repetition rate, large pulse energy tunable 3-5 μ The mid infrared laser has important significance in many fields such as atmospheric monitoring. Among the methods that can achieve medium wave infrared laser output, nonlinear frequency conversion technology has advantages such as all solid-state, wide wavelength tuning range, and less heat generation. Due to the damage threshold of solid materials, the current pulse energy of medium wave infrared lasers at the kilohertz repetition rate level is only~10mJ, which is difficult to meet the needs of application fields.

In this study, researchers compensated for the crystal thermal lens and thermally induced birefringence depolarization effect through optical and structural design, and ultimately achieved high polarization 2.1 with a repetition frequency of 2kHz and an average power of~200W using the Ho: YAG MOPA system μ M laser output. By using its pumped ZGP optical parametric oscillator and amplifier, a 3-5 pulse repetition rate of 2kHz, average power of 103.9W, pulse energy of~52mJ, and pulse width of 18.3ns were achieved μ M produces mid infrared laser output, but there is a problem of poor beam quality (M2=10) in mid wave infrared laser. By studying techniques such as pump allocation ratio, single wavelength injection, and amplifier seed and pump divergence angle matching, the beam quality M2<4 was achieved at an average power of 53.3 W and a pulse energy of 26.7 mJ for medium wave infrared lasers. This research work has achieved high brightness, high repetition rate, and high-energy medium wave infrared laser output, enhancing the application prospects of this type of laser.

This work is supported by the National Natural Science Foundation of China.

Figure 1 Structure diagram of high repetition rate and high energy medium wave infrared laser device


Figure 2 ZGP OPA Output Power and Pulse Width


Figure 3 Medium wave infrared laser spectrum
Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Related Recommendations
  • French laser giant's profits decline, laser radar business restructuring

    Recently, Marvel Fusion, a pioneer in the field of laser fusion, successfully raised 62.8 million euros (approximately 70.3 million US dollars) in funding. This funding will provide strong impetus for its fusion technology demonstration on existing laser equipment and accelerate the comprehensive technology validation process at its facility in Colorado, with the goal of achieving this milestone b...

    2024-10-09
    See translation
  • Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

    A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirecti...

    2024-04-29
    See translation
  • Ruisheng Clyde Aerospace Company Commercializes TNO's Satellite Communication Laser Terminal

    AAC Clyde Space, a small satellite technology multinational company headquartered in Uppsala, Sweden, has obtained the right to manufacture and distribute laser satellite communication terminals using the optical technology of the Dutch research institution TNO.TNO's technology helps to transmit satellite generated data to Earth through lasers, with the potential to achieve high speed and security...

    2024-05-24
    See translation
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    See translation
  • Scientists propose new methods to accelerate the commercialization of superlens technology

    Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.D...

    2024-03-29
    See translation