English

Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

34
2024-05-23 14:12:18
See translation

In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.

Scientists from the KTH Royal Institute of Technology in Stockholm have stated that combining quartz glass optical devices with optical fibers can achieve various innovations, including more sensitive remote sensors for the environment and healthcare. The printing technology they reported may also prove valuable in the production of drugs and chemicals.

This work was described in the ACS Nano journal.
Professor Kristin Gylfason from KTH stated that this method overcomes the long-term limitations of using quartz glass to construct fiber tips, which typically require high-temperature treatment, thereby damaging the integrity of temperature sensitive fiber coatings.

Compared to other methods, this process starts from a non carbon substrate. This means that there is no need for high temperatures to remove carbon, in order to make the glass structure transparent. Lead author Lee Lun Lai said that researchers have printed a quartz glass sensor, which has been proven to be more elastic than standard plastic sensors after multiple measurements.

New applications
Meanwhile, researchers from Aston University in Birmingham have received over £ 1 million ($1.27 million) in funding to develop very small optical devices that can also be installed on fiber surfaces. The potential applications are manufacturing, information technology, and agriculture.

The Engineering and Physical Science Research Council (EPSRC) in the UK has provided a grant of £ 1167290 for the PicoSNAP project. This award will be used to develop surface nanoscale axial photonics (SNAP) technology, which can manufacture micro photonic devices.

Traditionally, the accuracy of micro devices is limited by the size of atoms, and manufacturing techniques remain stable at a few nanometers. However, the PicoSNAP technology, pioneered by Professor Misha Sumetsky from the Aston Institute of Photonics Technology (AIPT), allows devices to be further scaled down so that measurements can be made in picometers.

Professor Sumetsky's goal is to develop a reliable manufacturing process to produce equipment that is both ultra precise and easy to replicate. If successful, the project will not only bring a new revolutionary technology, but also provide micro optical devices with previously unattainable performance and prepare for practical applications.

He said, "The lack of reliable and scalable picosecond precision manufacturing processes remains a major obstacle, and SNAP technology has the potential to meet this demand with its excellent accuracy and performance. The goal of this project is to develop the process, which requires a deep understanding of the relevant physical phenomena and the design and manufacture of new micro devices that are crucial for future communication, optical signal processing, microwave, and sensing technologies.".

Source: Laser Net

Related Recommendations
  • Dehaha launches laser cutting integrated machine screw compressor

    The revolution in the laser cutting industry is in full swing. Like the laser cutting machine industry, China's air compressor industry has developed rapidly in the past 20 years and has undergone iterative progress in response to the huge demands of various industries. It has gradually achieved a process from imitation to independent innovation.Recently, DHH Compressor has launched its latest inn...

    2024-05-27
    See translation
  • Southeast University makes new progress in quantum efficiency research of van der Waals light-emitting diodes

    Recently, Professor Ni Zhenhua from the School of Electronic Science and Engineering at Southeast University, Professor Lv Junpeng from the School of Physics, Professor Liu Hongwei from the School of Physical Science and Technology at Nanjing Normal University, and Professor Zhou Peng from the School of Microelectronics at Fudan University collaborated to propose a van der Waals light-emitting dio...

    2024-10-28
    See translation
  • Efficient implementation of laser welding automation using modern measurement technology

    Ensuring the integrity and quality of the welded hair clip is crucial in the assembly of electric motors. Usually, 160 to 220 hair clips are welded to each motor, and the accuracy of these welds directly affects the overall quality of the stator and motor. The traditional method of detecting these welds is difficult to balance the requirements of safety and accuracy, which often leads to damage to...

    2024-06-13
    See translation
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    See translation
  • Shanghai Microsystems Institute has developed a high-speed photon detector with distinguishable photon numbers

    Recently, Li Hao and You Lixing's team from the Chinese Academy of Sciences Shanghai Institute of Microsystems and Information Technology developed an ultrahigh speed, photon number resolvable optical quantum detector with a maximum count rate of 5GHz and a photon number resolution of 61 by using the sandwich structure superconducting nanowires and multi wires working in parallel. The related rese...

    2024-07-12
    See translation