English

Manufacturing customized micro lenses with optical smooth surfaces using fuzzy tomography technology

96
2024-05-30 15:50:34
See translation

Additive manufacturing, also known as 3D printing, has completely changed many industries with its speed, flexibility, and unparalleled design freedom. However, previous attempts to manufacture high-quality optical components using additive manufacturing methods often encountered a series of obstacles. Now, researchers from the National Research Council of Canada have turned to fuzzy tomography (an extension of the volume additive manufacturing (VAM) method of tomography) to create customized optical components.

"3D printing is changing every sector of the manufacturing industry," said lead author Daniel Webber. I have always been interested in 3D printed optical devices because they have the potential to completely change the design of optical systems. I saw a postdoctoral position at NRC, and they want to do volume 3D printing in micro optics. The rest is history.

 


Additive manufacturing challenges
In the past, technologies such as digital light processing, stereolithography, inkjet printing, and two-photon polymerization (2PP) have been used to construct optical components through layer by layer methods. However, the manufacturing process is often slow and it is difficult to manufacture optical components with curvature - which is required for many components - and the surface that is not parallel to the substrate has a height step defined by the layer thickness.

VAM also faces challenges due to the self writing waveguide effect and poor part quality (such as ridges on the surface called stripes), where the narrow writing beam used in VAM leads to an increase in printing speed on the plane parallel to the beam. Usually, post-processing methods are needed to improve part quality and smooth surfaces, but a direct VAM method that does not require additional steps has been sought.

Overcoming the challenge of blurred CT scans
In their latest research, Webber and his team have completed this direct VAM method while maintaining the design freedom provided by additive manufacturing for rapid prototyping.

Tomography VAM uses photosensitive resin that projects light to cure specific areas, allowing parts to be manufactured without supporting structures. Although the pencil shaped beam used in traditional tomography VAM methods can cause fringes, the new technology can produce commercial grade quality microlenses. It is called blurred tomography because it uses a wide range (more "dispersed") of sources to intentionally blur lines and reduce stripes.
The blurring of optical writing beams helps to generate surface roughness in the sub nanometer range, making it essentially molecular smooth. In contrast, other VAM methods have good collimation and low delay writing beams, so they do not blur in design.

By intentionally blurring the beam and coupling it with the scattered light introduced by a cylindrical photoresist bottle (a bath without refractive index matching), blurring can be achieved throughout the entire printing volume. In addition to its fast processing speed, another decisive feature of the fuzzy tomography method is that it does not require additional processing, making it a direct method for producing smooth optical components.
"The most important discovery of this work is that we can directly manufacture optically smooth surfaces and have free form ready to use optical components within 30 minutes," Webber said.

Although the entire processing time takes about 30 minutes, the actual printing time of the lens is less than one minute. This is similar to other VAM technologies (but does not require additional surface treatment steps). In contrast, a previous study found that printing a hemispherical lens with similar dimensions (2 and 3 millimeters), curvature error (3.9% to 5.4%), and surface roughness (2.9 and 0.53 nm) using 2PP takes 23 hours - indicating that the speed of blurred tomography scanning is much faster and produces finer surface features.

The research team demonstrated the potential of this new technology by manufacturing a millimeter sized flat convex optical lens with imaging performance comparable to commercial glass lenses. The inherent degree of freedom design provided by additive manufacturing has also helped researchers create biconvex microlens arrays (double-sided manufacturing) and overlay lenses onto optical fibers.

Like many fields of additive manufacturing, it is believed that VAM can provide a method for producing low-cost and rapid prototyping parts, especially free-form optical components. "We have demonstrated that fuzzy tomography can quickly manufacture a range of micro optical components. Looking ahead, we hope to extend these functions to larger part sizes and new materials," Weber said.

Source: Laser Net

Related Recommendations
  • Alliance unit Radiant High Tech Blue Purple Laser Assists in Ocean Exploration

    The ocean covers over 71% of the Earth's surface, and so far humans have only explored about 5% of the ocean. This means that there are still 95% of the depths of the ocean that we know nothing about, making it the most mysterious and unknown place on our planet.600 years ago, Zheng He led a fleet to play the prelude to the era of great navigation, laying the foundation for us to understand the wo...

    2023-11-06
    See translation
  • Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

    German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.Researcher Alexandro...

    2024-03-13
    See translation
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    See translation
  • Exail acquires laser company Leukos

    On January 6, 2025, Exail acquired Leukos, a laser company specializing in advanced laser sources for metrology, spectroscopy, and imaging applications. The financial terms of this acquisition have not been disclosed yet. Leukos will operate as a subsidiary of Exail, retaining its product portfolio and brand. This acquisition combines Leukos' advanced technologies, including pulsed micro lasers,...

    01-08
    See translation
  • BOFA launches the latest generation of high-temperature 3D printing filtration technology

    BOFA has consolidated its position as a market leader in additive manufacturing of portable smoke and particle filtration systems with the latest generation of 3D PrintPRO technology designed specifically for high-temperature processes.3D PrintPRO HT focuses on the 230V market and can filter high-temperature particles, gases, and nanoparticles emitted during polymer processing in the printing room...

    2024-04-15
    See translation