English

Shanghai Institute of Optics and Mechanics proposes a new scheme of Er doped silicate fiber as an extended L-band broadband amplifier

190
2024-06-05 15:03:58
See translation

Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on field strength optimization of Er doped silicate fiber as an extended L-band broadband amplifier. Relevant research achievements were published in Optics Letters under the title of "Er doped silicate fiber amplifiers in the L-band with flat gain".

The rapid development of big data and artificial intelligence has put forward higher requirements for the capacity of dense wave division multiplexers (DWDMs) in the new generation of optical communication systems. Compared to the mature C-band (1530-1565nm) erbium-doped fiber amplifier (EDFA), the L-band (1565-1625nm) EDFA has become a new generation of scalable optical communication products. However, the development of L-band EDFA faces difficulties and challenges: the gain of Er-doped fibers is limited by low longwave emission cross-sections and severe excited state absorption, resulting in very small gains for wavelengths greater than 1600nm. Therefore, how to improve the long wave gain of Er doped fiber materials is a key scientific problem that urgently needs to be solved in L-band broadband amplifiers.

The research team proposes a new scheme of micro ion field emphasis control to enhance the gain and spectral shaping of Er ions in a silicate fiber matrix. The feasibility of using silicate optical fibers as long wave gain enhancing substrates for Er ions has been confirmed both theoretically and experimentally. This scheme has achieved significant improvement in L-band gain and optimization of gain flatness in Er doped silicate optical fibers. At the same time, by adopting an all fiber scheme with heterogeneous fiber fusion, only a 1.5m long silicate fiber is used. At the longest wavelength of 1625nm in the L-band, the gain coefficient is 4.7dB/m, which is better than the 0.3dB/m of quartz fiber. In addition, the gain flatness of the fiber in the L-band is 0.8dB, which is better than the 5dB of quartz fiber. Compared to quartz fiber, this fiber has a higher doping concentration, shorter usage length, and larger gain coefficient, providing key material support for the new generation of L-band EDFA.

This work has received support from the National Natural Science Foundation of China and national key projects.


Figure 1: L-band gain of Er doped silicate optical fiber

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Related Recommendations
  • TRUMPF machine cooler saves 50 percent energy

    Ditzingen, 05. March 2025 – At its in-house exhibition INTECH, high-tech company TRUMPF is showcasing a new cooler for its laser cutting machines. The new unit is capable of reducing energy consumed during the cooling process and uses fifty percent less energy than conventional solutions. Unlike conventional coolers, the main components of this new solution— such as pumps, fans and compressors— ar...

    03-14
    See translation
  • Atomstack Maker A5 V2: A laser engraving machine suitable for beginners

    In the recent DIY field, innovative and increasingly affordable laser engraving machines have emerged, mainly designed for first-time users in this field. A particularly noteworthy example in this regard is the Atomstack Maker A5 V2 model. This device is known for its versatility and ease of use, making it an ideal choice for beginners in the world of laser engraving.The Atomstack Maker A5 V2 is a...

    2024-01-03
    See translation
  • Ultra thin two-dimensional materials can rotate the polarization of visible light

    For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate ...

    2024-04-27
    See translation
  • MICRONICS launches its innovative SLS 3D printer product

    3D printing company Micronics announced the launch of its new Micron desktop selective laser sintering (SLS) 3D printer.The company stated that Micron is priced at $2999 and aims to bring industrial grade 3D printing capabilities to desktops for professionals and hobbyists. One of the main features of Micron is its ability to print complex objects without the need for supporting structures. This i...

    2024-06-17
    See translation
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    See translation