English

Significant progress made in 808nm high-power semiconductor laser chips

1060
2024-06-14 14:41:24
See translation

The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.

808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processing, medical beauty, laser display, scientific research, aerospace and other fields. With the increasing demand for efficient laser solutions in the market, high-power and high-efficiency laser chips have become a key factor driving industry development. The company's R&D team has improved the slope efficiency, high-temperature characteristics, and output power of 808nm high-power semiconductor laser chips through structural upgrades and epitaxial technology optimization; By optimizing the cavity surface coating technology, the damage threshold COMD of the chip cavity surface is increased, thereby significantly improving the reliability of the chip.

The test results show that the high-power 808nm COS laser chip packaged in vertical core optoelectronic packaging has an output power of up to 81W and a maximum photoelectric conversion efficiency (PCE) of 57% at QCW 86A, which reflects the excellent high-temperature characteristics, high damage threshold, and high reliability of the product.

The realization of this innovative achievement highlights the profound technological accumulation and outstanding innovative strength of Lixin Optoelectronics in the field of high-power semiconductor laser chips. It not only enhances the company's competitive position in the domestic market, but also promotes the advancement of solid-state laser technology using such high-power laser chips as pump sources.

Source: Lixin Optoelectronics

Related Recommendations
  • Beijing Institute of Technology has made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals

    Recently, teachers and students from the Institute of Solid State Laser and Ultrafast Photonics at the School of Physics and Optoelectronic Engineering have made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals. The related research results are titled "Anisotropic carrier dynamics and laser fabricated luminosity patterns on oriented single cryst...

    2024-02-21
    See translation
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    See translation
  • AMS OSRAM launches new five junction laser

    Autonomous driving relies on sensors to provide precise, reliable, and long-range environmental perception at high frequencies per second. Lidar, as a key sensing technology, can capture high-precision 3D environmental information in real time without being affected by lighting conditions, thereby empowering safe and real-time decision-making. To improve the performance of LiDAR systems, ams OSRAM...

    11-10
    See translation
  • This laser cleaning "dark horse" announces annual performance and shareholder information

    On April 15th local time, Laser Photonics, a developer of laser cleaning equipment and solutions, announced its financial results for the fourth quarter and the year ended December 31, 2023. The financial report shows that in the fourth quarter of 2023, its revenue was $800000, with reduced operating and net losses. Here are the specific data:In addition to the financial report, the company's CEO ...

    2024-04-16
    See translation
  • Probe organization of photoacoustic devices using low-cost laser diodes

    Photoacoustic technology provides a non-invasive method for detecting biological tissues, but its clinical application is limited, partly due to the large volume and high cost of laser sources. A compact PA sensing instrument powered by laser diodes for biomedical tissue diagnosis can provide clinical doctors with a practical and effective tool for evaluating breast diseases.By providing a cost-ef...

    2024-03-06
    See translation