English

Research on LiDAR at the University of Electronic Science and Technology of China, published in Nature

1175
2024-06-22 09:49:06
See translation

The team from the School of Information and Communication Engineering at the University of Electronic Science and Technology of China has proposed for the first time a laser radar instrument based on the dispersion Fourier transform method, forming a new demodulation mechanism. This instrument breaks through the cross limitations of measurement speed, accuracy, and distance, and has unique advantages in the discovery of low, slow, and small targets such as drones. The relevant paper was published in Nature Communications.


Lidar, as a powerful tool, can draw spatial information in real-time with extremely high accuracy and is widely used in industrial manufacturing, remote sensing, airborne and vehicular tasks. In the past two decades, the rapid development of optical frequency combs has improved measurement accuracy to the level of quantum noise limitation. The research at the University of Electronic Science and Technology of China uses the dispersion Fourier transform method to analyze the data information of the phase-locked vernier double soliton laser comb. Through online pulse stretching, it achieves full spectrum interferometric measurement based on traditional time interferometry or pulse reconstruction methods to identify pulse delay. This results in an absolute distance measurement accuracy of 2.8 nanometers and a measurement distance of 1.7 kilometers. In addition, this method has the unique ability to completely eliminate dead zones, which is particularly beneficial for small object detection.

Source: OFweek

Related Recommendations
  • Telescope Discovers Record breaking Galaxy Space Laser

    A powerful telescope in South Africa has detected a space laser 5 billion light-years away from Earth, known as the "megamaser". Scientists named it Nkalakatha, which means "big boss" in Zulu language.Nkalakatha is the farthest hydroxyl giant detected so far, discovered by the MeerKAT telescope on the first night of the survey, which is expected to include 3000 hours of observation. The team of sc...

    2024-03-09
    See translation
  • Progress has been made in the research of single shot characterization technology for complex combination laser pulses at Shanghai Institute of Optics and Fine Mechanics

    Recently, the research team of the High Power Laser Physics Joint Laboratory at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made significant progress in the study of single shot characterization technology for complex combination laser pulses. The research team utilized an improved broadband transient grating frequency resolved optical switch technology (T...

    03-24
    See translation
  • Mazak will showcase high-speed fiber lasers on Tube 2024

    Yamazaki Mazak designed the FT-150 fiber laser tube processing machine for high-speed cutting of small and medium-sized diameter pipes, for use in Tube 2024. The machine tool will be controlled by a new type of pipe cutting CNC, which will be exhibited for the first time in Europe.Tube 2024 will be held from April 15th to 19th in Dusseldorf, Germany. Mazak will be exhibited at booth C17 in Hall 5....

    2024-03-16
    See translation
  • Mei Xin Sheng: The development of high-precision polarized light crown products has been completed

    On September 5, when Mei Xin Sheng held an analyst meeting, it said that the company has launched a fully integrated ultra-low power optical proximity detection sensor and a three-in-one ambient light and proximity detection sensor with ultra-high sensitivity, which have entered mass production.The research and development of high-precision polarized light crown products has been completed, the fe...

    2023-09-05
    See translation
  • Massachusetts University team achieves new breakthrough in photolithography chip

    Recently, a research team from the University of Massachusetts Amherst has pioneered a new technology that uses laser irradiation on concentric superlenses on chips to generate holograms, thereby achieving precise alignment of 3D semiconductor chips.This research result, published in the journal Nature Communications, is expected to not only reduce the production cost of 2D semiconductor chips, bu...

    2024-11-06
    See translation