English

Research on LiDAR at the University of Electronic Science and Technology of China, published in Nature

95
2024-06-22 09:49:06
See translation

The team from the School of Information and Communication Engineering at the University of Electronic Science and Technology of China has proposed for the first time a laser radar instrument based on the dispersion Fourier transform method, forming a new demodulation mechanism. This instrument breaks through the cross limitations of measurement speed, accuracy, and distance, and has unique advantages in the discovery of low, slow, and small targets such as drones. The relevant paper was published in Nature Communications.


Lidar, as a powerful tool, can draw spatial information in real-time with extremely high accuracy and is widely used in industrial manufacturing, remote sensing, airborne and vehicular tasks. In the past two decades, the rapid development of optical frequency combs has improved measurement accuracy to the level of quantum noise limitation. The research at the University of Electronic Science and Technology of China uses the dispersion Fourier transform method to analyze the data information of the phase-locked vernier double soliton laser comb. Through online pulse stretching, it achieves full spectrum interferometric measurement based on traditional time interferometry or pulse reconstruction methods to identify pulse delay. This results in an absolute distance measurement accuracy of 2.8 nanometers and a measurement distance of 1.7 kilometers. In addition, this method has the unique ability to completely eliminate dead zones, which is particularly beneficial for small object detection.

Source: OFweek

Related Recommendations