English

Low noise! Switzerland develops a new type of laser

787
2024-07-03 10:39:08
See translation

According to foreign media reports, scientists from the Physics Research Institute and the Institute of Physics and the Center for Quantum Science and Engineering at the Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland have made a new progress in the field of excitation science, developing a smaller and quieter laser system than previous products.

Small laser system (Image source: Swiss Federal Institute of Technology Lausanne)


The team published their research findings in the journal Nature Photonics, introducing that the new laser system can be integrated into microcircuits in electronic devices, making it more cost-effective and multifunctional.

This new laser system has a wide range of potential applications and can transform various measuring equipment and systems, including advanced sensors indispensable for autonomous vehicle, aircraft and satellites, such as laser radar (LIDAR, light detection and ranging). Using smaller and quieter lasers in such sensors can create higher resolution images and models, providing more accurate data, which can be utilized by industries ranging from military to medicine to advance the development of technology in their respective fields.

Traditional lasers have always faced a challenge of high noise levels, which may seriously affect their performance. Laser noise may lead to reduced measurement accuracy and unreliable data, which is a critical flaw for fields that require extremely high precision.

This study suggests that laser systems may become smaller and quieter, potentially having a significant impact on precision instruments such as LiDAR. Lidar is used in various fields, and one of the most exciting applications is in the autonomous driving industry. By utilizing precision sensing technology, LiDAR can assist in real-time mapping of the surrounding environment of vehicles. This type of new, low noise, customized laser can greatly improve the accuracy and reliability of LiDAR systems, achieving safer autonomous driving. The versatility of such lasers also means that they can be easily integrated into the limited space of vehicles, thereby reducing the overall cost and complexity of the system.
This type of multifunctional laser can also affect future telecommunications technology, especially optical communication networks. More efficient and stable lasers can be converted into faster and more reliable Internet speeds and more stable data transmission.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • The Key Role of Laser Pointing Stability in the Application of Lithography Systems

    Lithography is one of the core processes in semiconductor manufacturing, and extreme ultraviolet lithography technology, as a new generation lithography technology, is also in a rapid development stage. The basic principle is to use photoresist (also known as photoresist) to form corrosion resistance due to photochemical reactions after being photosensitive, and to engrave the patterns on the mask...

    2024-07-02
    See translation
  • Scientists at St. Andrews University have made significant breakthroughs in compact laser research

    Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are...

    2023-10-04
    See translation
  • Researchers use a new frequency comb to capture photon high-speed processes

    From detecting COVID in respiration to monitoring greenhouse gas concentrations, laser technology called frequency combs can recognize specific molecules as simple as carbon dioxide to as complex as monoclonal antibodies, with unparalleled accuracy and sensitivity. Although frequency combs have incredible capabilities, their ability to capture high-speed processes such as hypersonic propulsion or ...

    2023-11-02
    See translation
  • Trumpf 3D printing technology innovation: zero support structure, low waste, unlimited possibilities

    Ditzingen, Germany, September 8, 2023) - TRUMPF, the world's leading provider of machine tools and laser technology solutions, has improved its 3D printing software TruTops Print to print parts with suspension angles as low as 15 degrees with little need for support structures. Trumpf will present its new technology at the European International Machine Tool Show (EMO 2023) in Hannover, Germany.Fi...

    2023-09-13
    See translation
  • Nankai University makes progress in the field of free electron photon interactions

    Recently, a research team led by Professor Cai Wei and Professor Xu Jingjun from the School of Physical Sciences at Nankai University has experimentally confirmed for the first time the generation of polaritons, also known as Smith Purcell radiation, at the two-dimensional scale, and further demonstrated the ability of free electrons to regulate two-dimensional Smith Purcell radiation. The researc...

    02-11
    See translation