English

Low noise! Switzerland develops a new type of laser

1171
2024-07-03 10:39:08
See translation

According to foreign media reports, scientists from the Physics Research Institute and the Institute of Physics and the Center for Quantum Science and Engineering at the Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland have made a new progress in the field of excitation science, developing a smaller and quieter laser system than previous products.

Small laser system (Image source: Swiss Federal Institute of Technology Lausanne)


The team published their research findings in the journal Nature Photonics, introducing that the new laser system can be integrated into microcircuits in electronic devices, making it more cost-effective and multifunctional.

This new laser system has a wide range of potential applications and can transform various measuring equipment and systems, including advanced sensors indispensable for autonomous vehicle, aircraft and satellites, such as laser radar (LIDAR, light detection and ranging). Using smaller and quieter lasers in such sensors can create higher resolution images and models, providing more accurate data, which can be utilized by industries ranging from military to medicine to advance the development of technology in their respective fields.

Traditional lasers have always faced a challenge of high noise levels, which may seriously affect their performance. Laser noise may lead to reduced measurement accuracy and unreliable data, which is a critical flaw for fields that require extremely high precision.

This study suggests that laser systems may become smaller and quieter, potentially having a significant impact on precision instruments such as LiDAR. Lidar is used in various fields, and one of the most exciting applications is in the autonomous driving industry. By utilizing precision sensing technology, LiDAR can assist in real-time mapping of the surrounding environment of vehicles. This type of new, low noise, customized laser can greatly improve the accuracy and reliability of LiDAR systems, achieving safer autonomous driving. The versatility of such lasers also means that they can be easily integrated into the limited space of vehicles, thereby reducing the overall cost and complexity of the system.
This type of multifunctional laser can also affect future telecommunications technology, especially optical communication networks. More efficient and stable lasers can be converted into faster and more reliable Internet speeds and more stable data transmission.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • 3D printed chocolate: a delicious fusion of innovation and sustainable development

    In the era of sustainable development and cutting-edge technology, the integration of 3D printing and culinary art is not only an innovation, but also a proof of human creativity. Imagine in such a world, your desserts are not just coming out of the kitchen, but carefully designed and printed layer by layer. This is not a glimpse of the distant future, but the reality of today, as developers have ...

    2024-02-19
    See translation
  • Shanghai Optics and Machinery Institute has made new progress in the research of high repetition frequency and high energy medium wave infrared lasers

    Recently, the research team of Aerospace Laser Technology and System Department of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, based on 2.1 μ M Ho: YAG main oscillator amplifier pumped ZGP crystal, achieving high energy 3-5 at kHz repetition frequency μ The output of M medium wave infrared laser and further research on beam quality improvement technology for high-...

    2024-05-22
    See translation
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Application in the Transient Optics Research Room of Xi'an Institute of Optics and Mechanics, Chinese Academy of Sciences has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in Laser&Photonics Reviews (IF=9.8), the top journal of the first district of the Chine...

    04-30
    See translation
  • Laser gyroscopes measure small changes in daytime length on Earth

    Recently, scientists used laser gyroscopes to measure that the change in Earth's rotational speed is less than one millionth. This technology can help scientists understand the complex flow of water and air, which can cause the smallest adjustments to the Earth's rotation.The Earth's rotation is not completely stable. Planets accelerate or slow down as they rotate, slightly shortening or prolongin...

    2023-09-19
    See translation
  • Samsung Heavy Industries Developing a Laser High Speed Welding Robot for Liquefied Natural Gas Ships

    South Korea's Samsung Heavy Industry announced on Thursday that it has developed the first laser high-speed welding robot in the maritime field, aimed at significantly improving the construction efficiency of liquefied natural gas (LNG) transport ships.This new technology is specifically designed for rapid welding of thin film panels used in cargo compartments of liquefied natural gas transport sh...

    2023-09-22
    See translation