English

Low noise! Switzerland develops a new type of laser

1160
2024-07-03 10:39:08
See translation

According to foreign media reports, scientists from the Physics Research Institute and the Institute of Physics and the Center for Quantum Science and Engineering at the Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland have made a new progress in the field of excitation science, developing a smaller and quieter laser system than previous products.

Small laser system (Image source: Swiss Federal Institute of Technology Lausanne)


The team published their research findings in the journal Nature Photonics, introducing that the new laser system can be integrated into microcircuits in electronic devices, making it more cost-effective and multifunctional.

This new laser system has a wide range of potential applications and can transform various measuring equipment and systems, including advanced sensors indispensable for autonomous vehicle, aircraft and satellites, such as laser radar (LIDAR, light detection and ranging). Using smaller and quieter lasers in such sensors can create higher resolution images and models, providing more accurate data, which can be utilized by industries ranging from military to medicine to advance the development of technology in their respective fields.

Traditional lasers have always faced a challenge of high noise levels, which may seriously affect their performance. Laser noise may lead to reduced measurement accuracy and unreliable data, which is a critical flaw for fields that require extremely high precision.

This study suggests that laser systems may become smaller and quieter, potentially having a significant impact on precision instruments such as LiDAR. Lidar is used in various fields, and one of the most exciting applications is in the autonomous driving industry. By utilizing precision sensing technology, LiDAR can assist in real-time mapping of the surrounding environment of vehicles. This type of new, low noise, customized laser can greatly improve the accuracy and reliability of LiDAR systems, achieving safer autonomous driving. The versatility of such lasers also means that they can be easily integrated into the limited space of vehicles, thereby reducing the overall cost and complexity of the system.
This type of multifunctional laser can also affect future telecommunications technology, especially optical communication networks. More efficient and stable lasers can be converted into faster and more reliable Internet speeds and more stable data transmission.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Ultra short pulse laser technology shines a sword, winning 3.5 million euros in financing

    Recently, Italian startup Lithium Lasers announced that the company has successfully raised 3.5 million euros in ultra short pulse laser technology.This company, founded in 2019, focuses on developing an ultra short pulse laser (USPL) called FemtoFlash, which is aimed at multiple industries such as aerospace, healthcare, automotive, and consumer electronics, particularly suitable for material proc...

    2024-04-26
    See translation
  • Uncovering the Secrets of Nature: A New Generation of X-ray Lasers Reveals the Mystery of Atoms

    As a breakthrough leap in scientific exploration, the new generation of powerful X-ray lasers is now targeting the fastest and most basic processes in nature. Their mission: to uncover the complex atomic arrangement that drives these phenomena, providing unprecedented insights into chemical reactions, electronic behavior in materials, and the mysteries of the natural world.Unlocking the precise me...

    2023-09-25
    See translation
  • Photonic hydrogel of high solid cellulose with reconfigurability

    Recently, Qing Guangyan, a researcher team from the Research Group on Bioseparation and Interface Molecular Mechanism (1824 Group) of Biotechnology Research Department of Dalian Institute of Chemical Physics, Chinese Academy of Sciences, designed and prepared a highly solid cellulose photonic hydrogel with reconfigurability and mechanical discoloration. This preparation method opens up a new way t...

    02-17
    See translation
  • Innoviz Technologies, a publicly listed laser radar company, has laid off approximately 9% of its workforce

    On February 5, 2025, Innoviz Technologies, an Israeli laser radar listed company, announced operational optimization measures to extend the duration of the company's cash reserve usage and accelerate profitability and free cash flow generation. To maximize efficiency, the company will reduce investment in developing mature areas. These measures will result in a reduction of approximately 9% in the...

    02-07
    See translation
  • Innovating Photonics: Lithium Tantalate Provides Power for the Next Generation of Optoelectronic Circuits

    The new photonic integrated circuit technology based on lithium tantalate has improved cost efficiency and scalability, making significant progress in the fields of optical communication and computing.The rapid development of photonic integrated circuits (PICs) has revolutionized optical communication and computing systems, combining multiple optical devices and functions on a single chip.For deca...

    2024-05-14
    See translation