English

New progress in research on laser cleaning and improving the damage threshold of fused quartz components at Shanghai Optics and Machinery Institute

954
2024-07-08 14:48:44
See translation

Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made new progress in the study of improving the damage threshold of fused quartz elements through laser cleaning. The study proposes for the first time the use of microsecond pulse CO2 laser cleaning to enhance the damage resistance performance of fused quartz components. The relevant research results were published in the International Journal of Mechanical Sciences under the title "Microsecond pulsed CO2 laser cleaning of high damage threshold fused silica".

With the development of modern optical technology, the problem of ultraviolet laser-induced damage to fused quartz components seriously restricts the development of high-power laser systems. At present, the contact polishing process inevitably produces defects and pollution, and it is difficult to completely remove them through post-treatment, greatly reducing the performance and lifespan of fused quartz components.

Principle and experimental schematic diagram of microsecond pulse CO2 laser cleaning
To this end, the research team revealed the modulation mechanism of defects and pollution on component damage performance through a multi-scale simulation method of macro micro nano scale. Through multimodal characterization of the distribution patterns of defects and contamination, it has been confirmed that laser cleaning can effectively eliminate and suppress surface/subsurface defects, absorption defects, chemical structural defects, and elemental contamination, without generating residual thermal stress and severely damaging the surface roughness of materials. The samples cleaned by laser showed a higher damage threshold compared to those processed by traditional processing techniques (mechanical chemical polishing, mechanical chemical polishing+magnetorheological polishing, mechanical chemical polishing+hydrofluoric acid etching). The damage threshold increased by 47.6% with a 0% probability and 27.0% with a 100% probability, respectively. The laser cleaning method proposed in this study provides a new approach for the low defect and clean manufacturing of fused quartz components.

The related work has received support from key research and development programs of the Ministry of Science and Technology, the National Natural Science Foundation of China, and the Shanghai Sailing Plan.

Source: Shanghai Institute of Optics and Mechanics

Related Recommendations
  • German optoelectronic component manufacturer collaborates heavily to develop VCSELs lasers

    This collaboration deeply integrates the unique expertise and cutting-edge technological achievements of both companies in the field of optoelectronics, aiming to broaden the boundaries of optoelectronics innovation.EPIGAP OSA Photonics GmbH, as a leader in the research and manufacturing of optoelectronic components in Germany, is deeply rooted in multiple fields such as medical technology, indust...

    2024-08-06
    See translation
  • Oxford University develops technology for capturing strong laser pulses in one go

    Physicists at the University of Oxford have unveiled a “pioneering” method for capturing the full structure of ultra-intense laser pulses in a single measurement. The breakthrough, a collaboration with Ludwig-Maximilian University of Munich and the Max Planck Institute for Quantum Optics, could revolutionize the ability to control light-matter interactions, say the team.The Oxford announcement sta...

    07-07
    See translation
  • AMS OSRAM launches new five junction laser

    Autonomous driving relies on sensors to provide precise, reliable, and long-range environmental perception at high frequencies per second. Lidar, as a key sensing technology, can capture high-precision 3D environmental information in real time without being affected by lighting conditions, thereby empowering safe and real-time decision-making. To improve the performance of LiDAR systems, ams OSRAM...

    11-10
    See translation
  • Researchers at the Technion-Israel Institute of Technology have developed coherently controlled spin optical lasers based on single atomic layers

    Researchers at the Technion-Israel Institute of Technology have developed a coherently controlled spin optical laser based on a single atomic layer.This discovery was made possible by coherent spin-dependent interactions between a single atomic layer and a laterally constrained photonic spin lattice, which supports a high-Q spin valley through Rashaba-type spin splitting of photons of bound states...

    2023-09-12
    See translation
  • HP100A-50KW-GD laser power detector for measuring extremely high power laser beams

    The HP100A-50KW-GD laser power detector is mainly designed for manufacturers of high-power lasers and laser systems, factories that use high-power lasers to cut thick metal parts, and military applications.The HP100A-50KW-GD adopts a gold reflector cone and a reduced back reflection geometry, which can capture 97% of incident light and process up to 50 kW of continuous laser power. The back reflec...

    2024-01-16
    See translation