English

NASA plans to use lasers to measure the impact of exhaust gases on the lunar surface during landing, in order to plan lunar landings more effectively

51
2023-10-31 11:08:22
See translation

Recently, NASA's official website showed that a research team at the University of Central Florida has tested an instrument called Ejecta STORM, which aims to measure the size and velocity of surface particles generated by exhaust gases from rocket powered landers on the moon or Mars.

According to NASA, when a spacecraft lands on the moon or Mars, rocket exhaust plumes can produce efflorescent ejecta (abrasive dust and rapidly moving large particles) that may damage the lander and surrounding structures. Understanding how the exhaust of rocket engines affects the ejectors will help task designers model soil erosion rate, particle size distribution, and velocity related to plume surface interactions, thereby more effectively planning lunar landings.

To meet this demand, researchers at the University of Central Florida have developed a laser instrument called Ejecta STORM (Sheet Tracking, Opacity, and Regolith Material). The four tethered flights allowed researchers to test the integration of the system with the lander and simulate the operation under flight conditions of the lunar lander plume effect. These tests are based on data collected during flight activities conducted using Xiaodac in 2020.

Researchers hope that this technology can provide information for model development and reduce the risk of future lunar landings, ultimately improving the design of planetary science missions based on rovers, manned lunar and other celestial missions, and on-site resource utilization missions.

Source: Sohu

Related Recommendations
  • Micro devices output powerful lasers at room temperature, reducing power consumption by 7 times

    Recently, researchers at the Rensselaer Polytechnic Institute in the United States have invented a miniature device thinner than human hair, which can help scientists explore the essence of light and matter and unravel the mysteries of the quantum field. The most important advantage of this technology is that it can work at room temperature without the need for complex infrastructure. The resea...

    2024-05-29
    See translation
  • Gooch&Housego successfully acquires Phoenix Optical Technologies

    Recently, renowned precision optical technology manufacturer Gooch&Housego (G&H) announced the successful acquisition of Phoenix Optical Technologies, a precision optical manufacturer located in St. Asaf, Wales, UK. The acquisition transaction amounts to £ 6.75 million, which not only consolidates G&H's market position in the aerospace and defense sectors, but also significantly expa...

    2024-11-04
    See translation
  • ABB will add optical sensors to four greenhouse gas monitoring satellites

    ABB has signed a third contract with the global leader in high-resolution space greenhouse gas monitoring, GHGSat, to manufacture optical sensors for its C12, C13, C14, and C15 satellites. It is reported that C12, C13, C14, and C15 satellites are scheduled to be launched into orbit in 2024.These new satellites will join GHGSat's expanding constellation for detecting and quantifying industrial gas ...

    2023-12-06
    See translation
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of t...

    2024-09-27
    See translation
  • Diffractive optical elements: the behind the scenes hero of structured light laser technology

    In today's rapidly developing technological era, structured light laser technology has become an important tool in the fields of 3D measurement and image capture. The core of this technology lies in a magical device called Diffractive Optical Elements (DOE), which can precisely control and shape laser beams, creating various complex light patterns. But what exactly is DOE? How does it work? Let Ho...

    2024-04-10
    See translation