English

New type of metasurface with adjustable beam frequency and direction

1165
2024-07-30 10:21:02
See translation

Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for processing free space signals rather than fiber optic signals, which can create many sidebands or channels with different optical frequencies.

When many people share the same Wi Fi network, the network may experience latency or lag. But if everyone had a dedicated wireless communication channel, it would be hundreds of times faster and bandwidth increased than the Wi Fi we use today. The new research is not only expected to be used for developing new wireless communication channels, but also opens up new avenues for developing new ranging technologies or transmitting large amounts of data into space.

Researchers have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams, creating many sidebands or channels of different optical frequencies.

The research team stated that the design of metasurfaces aims to surpass the effects that traditional optical components such as cameras or microscope lenses can achieve. This multi-layer crystal tube like device is called a "spatiotemporal metasurface", which adopts carefully selected nanoscale antenna pattern design to change the response of light, and can reflect, scatter or otherwise control light, such as reflecting light in a specific direction and at a specific frequency.

The core width and length of the device are both 120 microns, and the wavelength of the light wave used when operating in reflection mode at the optical frequency is 1530 nanometers, which is thousands of times higher than the frequency of radio waves, meaning that the available bandwidth is much larger.

The research team suggests that these metasurfaces could be used in the field of LiDAR, where light can be used to capture depth information of three-dimensional scenes. The ultimate goal of the team is to develop a 'universal metasurface' that can create multiple optical channels in free space, with each channel transmitting information in a different direction. They envision that in the future, when many people use laptops in the same coffee shop, everyone will no longer receive wireless Wi Fi signals, but instead receive their own high fidelity beam signals, and no longer have to worry about internet speed issues.

Source: Science and Technology Daily

Related Recommendations
  • Researchers have discovered new multiphoton effects in quantum interference of light

    An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research."We have demonstrated through experiments that the interference eff...

    2024-01-24
    See translation
  • Researchers are studying lasers for controlling magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-02-11
    See translation
  • Scientists use the light inside fibers as thin as hair to calculate

    Scientists from Heriot Watt University in Edinburgh, Scotland have discovered a powerful new method for programming optical circuits, which is crucial for the delivery of future technologies such as unbreakable communication networks and ultrafast quantum computers."Light can carry a large amount of information, and optical circuits that use light instead of electricity are seen as the next majo...

    2024-01-20
    See translation
  • Hexconn announces the launch of a new modular 3D laser scanner designed specifically for large-scale surface inspection

    The new Absolute Scanner AS1-XL adopts the same "Shine" technology as its flagship product Absolute Scanner AS1, allowing it to collect clean 3D data from the most challenging surface types at a very high speed.The new scanner has a wider scanning line and is designed specifically for inspecting large surfaces and deep cavities in inspection applications such as aerospace panels, ship propellers, ...

    2023-09-27
    See translation
  • Laser giant announces launch of new fiber laser platform

    Recently, Coherent Corp. announced the launch of the EDGE FL TM high-power fiber laser series, tailored specifically for cutting applications in the machine tool industry. The power levels of the EDGE FL series range from 1.5kW to 20kW, redefining the balance between value and performance to meet the growing demand for high-power, reliable laser sources in fiber laser cutting.With the increasing d...

    2024-10-23
    See translation