English

Omnitron Announces Partnership with Silex Microsystems to Mass Produce MEMS Scanning Mirrors for LiDAR

1194
2023-09-19 14:14:49
See translation

According to reports, Omnitron Sensors, a pioneer in the development of MEMS sensing technology for large-scale and low-cost markets, recently announced that it will collaborate with Silex Microsystems, a subsidiary of Semielectronics, to mass produce MEMS scanning mirrors for LiDAR.

Eric Aguilar, co-founder and CEO of Omnitron Sensors, said, "We have noticed a huge demand from manufacturers of advanced driving assistance systems (ADAS), drones, and other robotic systems for low-cost, highly reliable LiDARs.

We have chosen Silex Microsystems, the world's largest pure MEMS foundry, to demonstrate our market readiness to deliver the first batch of MEMS scanning mirrors that can meet the accuracy, reliability, size, cost, and volume requirements of LiDAR in different applications
Concept proof MEMS scanning mirror developed by Omnitron Sensors.

According to Omnitron Sensors, its MEMS scanning mirror can provide 2-3 times the field of view (FoV) compared to other MEMS scanning mirrors currently used in remote LiDAR applications. Its stepper scanning mirror is designed specifically for harsh high vibration automotive environments and drone applications, and LiDAR gyroscopes produced by other suppliers cannot meet the demanding requirements of these applications.

Omnitron Sensors' solution has constructed an electrostatic motor that can move MEMS mirrors and achieve greater unit area force than similar products currently on the market. Aguilar stated that Omnitron Sensors achieved this goal using a 3D MEMS topology, but more importantly, its manufacturability. To ensure a simple and manufacturable process, Aguilar stated that their MEMS scanning mirrors do not use metal springs, but instead use silicon based springs, which have a hardness one thousand times that of the original and will not wear out.

Addressing MEMS Manufacturing Challenges
The challenges of MEMS device manufacturing are well known. Due to issues with the size, reliability, durability, and repeatability of MEMS devices, as well as the uniqueness of each new MEMS device process technology, MEMS manufacturing costs are high and the cycle from design to delivery is slow. The core IP of Omnitron Sensors can address these challenges.

As a new topology of MEMS, Omnitron Sensors' IP has redesigned its manufacturing process and provided support through new packaging technologies. This has accelerated the mass production of various small, low-cost, and precision MEMS devices, from scanning mirrors and inertial measurement units to microphones, pressure sensors, and switches.

Aguilar said: Omnitron Sensors' new MEMS topology, cleverly redesigning silicon process steps and new packaging methods, is an important step forward in the microelectronics industry. It greatly reduces the manufacturing complexity that has limited MEMS growth to date. By utilizing the standard equipment and processes already in place at the Silex Microsystems wafer factory, Omnitron Sensors have cleared the way for fast, large-scale delivery of robust, reliable, and affordable MEMS devices .

Source: Sohu

Related Recommendations
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    See translation
  • Laserline completes 70% equity acquisition of WBC Photonics

    Recently, Laserline, a leading semiconductor laser manufacturer in Germany, announced that it has completed the acquisition of a 70% stake in WBC Photonics, a Boston based laser technology expert, marking a significant strategic expansion for Laserline. Through this transaction, Laserline not only expands its product portfolio to include blue laser systems with excellent beam quality (better tha...

    2024-09-20
    See translation
  • The method of reducing the linewidth of laser beam by more than 10000 times

    A project at Macquarie University has demonstrated a way to narrow the linewidth of a laser beam by a factor of over ten thousand.Published in APL Photonics, the technique offers a promising route toward ultra-narrow linewidth lasers for potential use in a wide range of pump-pulse systems.Laser linewidth measures how precisely a beam of light maintains its frequency and color purity, and narrow-li...

    07-28
    See translation
  • The laser direct writing lithography equipment market is expected to reach $160.25 million in 2029 with a compound growth rate of 5.21%

    Lithography machine is the key equipment for making high precision mask plate. Using a very fine laser beam, the highly precise line pattern is drawn on the mask substrate under the control of an extremely precise automatic control system.Laser direct writing is to use a laser beam with variable intensity to implement variable dose exposure on the resist material (photoresist) on the subst...

    2023-08-04
    See translation
  • Laser based deformation may lead to self optimized aircraft wings

    Due to advances in materials science by Stockholm researchers, changing the shape during flight to better handle airflow passing through its aircraft wings may be imminent. The trick involves the melting and drilling capabilities of lasers.Researchers from KTH Royal Institute of Technology in Stockholm, Sweden conducted experiments on paraffin. Using the 2D version of the material, they were able ...

    2024-01-18
    See translation