English

Progress in the Study of Nonlinear Behavior of Platinum Selenide Induced by Strong Terahertz at Shanghai Optics and Machinery Institute

796
2024-05-23 14:28:07
See translation

Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the nonlinear behavior and mechanism of platinum selenide in terahertz band. The research team systematically studied the spectral and optical intensity characteristics of platinum selenide under strong terahertz pulse excitation, revealing two nonlinear processes dominated by the real and imaginary parts of nonlinear polarization. The related achievements were published in Optics Letters under the title "Terahertz triggered ultra fast non-linear optical activities in two dimensional centrosymmetric PtSe2".

Terahertz is an electromagnetic spectrum region between millimeter waves and infrared optics, and exploring potential materials for application in the terahertz band is crucial for the development of terahertz technology. The two-dimensional topological semi metallic platinum selenide exhibits excellent performance in terahertz generation and modulation due to its broadband photoresponse and photoelectric response characteristics. 
However, there is still a lack of systematic research on the basic nonlinear optical properties of platinum selenide under strong terahertz interaction. Therefore, exploring the nonlinear phenomena and underlying mechanisms of platinum selenide in the terahertz domain is of great significance.

In this study, the research team utilized ultrafast terahertz pumping infrared detection technology to investigate the interaction between terahertz pulses and platinum selenide thin films. The strong terahertz pulse breaks the inversion symmetry center of platinum selenide through nonlinear polarization and radiates a strong second harmonic signal using its nonlinear polarization real part effect. The time scale of the second harmonic signal is comparable to that of terahertz pulses, and it has a high signal-to-noise ratio and switching ratio, confirming that this property can be applied to terahertz modulation and logic gates. On the other hand, due to the effect of the imaginary part of nonlinear polarization, the conductivity of platinum selenide is modulated by strong terahertz, exhibiting a phenomenon of enhanced nonlinear absorption. This work reveals the nonlinear properties of platinum selenide in the terahertz region, achieving transient reversible inversion symmetry control of platinum selenide, and expanding the application potential of platinum selenide based two-dimensional materials in future optoelectronic devices and logic circuits.

The related work has received support from the National Natural Science Foundation of China and other organizations.

Figure 1 (a) Schematic diagram of terahertz pump infrared light detection system. (b) Waveform diagram of terahertz pump source. (c) Reflection spectra with and without terahertz pumping.

Figure 2 (a) Second harmonic spectrum of platinum selenide obtained under terahertz pumping infrared light detection system. (b) Comparison of the square of the terahertz waveform with the ultrafast dynamic process extracted at 725 nm. (c) The relationship between second harmonic signal strength and terahertz field strength. (d) Polarization properties of second harmonic signal intensity.

Figure 3 (a) The relationship between the transmittance of platinum selenide thin films and terahertz field strength. (b) The relationship between the conductivity of platinum selenide and terahertz field strength.

Source: Shanghai Institute of Optics and Precision Machinery

Related Recommendations
  • Two Enterprises Collaborate to Overcome Optical Pollution in Vacuum Laser Welding

    Cambridge Vacuum Engineering (CVE), a precision welding equipment company in the UK, and Cranfield University recently announced that they have successfully reached a Knowledge Transfer Partnership (KTP), which will provide global engineers with more welding options.In this cooperation, both parties jointly solved the optical pollution problem in vacuum laser welding, paving the way for the compre...

    2024-02-03
    See translation
  • Sales and order volume of Deutsche Bahn Group have decreased

    Recently, TRUMPF, a leading global provider of machine tools and laser technology solutions, released preliminary data for the 2023/24 fiscal year: compared to the previous fiscal year, sales decreased by about 4% year-on-year to 5.2 billion euros; The order amount decreased by 10% to 4.6 billion euros. The Tongkuai Group ended its 2023/24 fiscal year on June 30, 2024, with a decrease in both s...

    2024-07-22
    See translation
  • 2026 SPIE Entrepreneurship Challenge Opens for Registration

    Applications are now open for the 2026 SPIE Startup Challenge. The annual entrepreneurial pitch competition is held by SPIE, the international society for optics and photonics, as part of SPIE Photonics West.In 2026, Photonics West will be held 17-22 January in San Francisco’s Moscone Center, with the SPIE Startup Challenge finals being held 20 January.The SPIE Startup Challenge is a competitive e...

    09-08
    See translation
  • BluGlass successfully raised $5.87 million to accelerate GaN laser production and delivery

    Recently, BluGlass, a leading global semiconductor development company, successfully completed its stock purchase plan (SPP) and raised $5.87 million in funds (excluding costs). This SPP provides eligible shareholders with the opportunity to subscribe to up to $100000 in new shares of BluGlass at a discounted price of $0.037 per share, along with free additional options. This initiative has gained...

    2024-04-12
    See translation
  • How to precisely control the cavity length of gallium nitride based vertical cavity surface emitting lasers?

    Gallium nitride (GaN) vertical cavity surface emitting laser (VCSEL) is a semiconductor laser diode with broad application prospects in various fields such as adaptive headlights, retinal scanning displays, nursing point testing systems, and high-speed visible light communication systems. Their high efficiency and low manufacturing costs make them particularly attractive in these applications.Gall...

    2024-06-12
    See translation