English

Overview of Ultra Short Pulse Laser Processing of Wide Bandgap Semiconductor Materials

941
2024-07-30 11:55:25
See translation

Professor Zhang Peilei's team from Shanghai University of Engineering and Technology, in collaboration with the research team from Warwick University and Autuch (Shanghai) Laser Technology Co., Ltd., published a review paper titled "A review of ultra shot pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN" in the international journal Materials Science in Semiconductor Processing. The paper reviewed and summarized the current status and challenges of using ultra short pulse lasers to process wide bandgap semiconductor materials.

In the past few decades, semiconductor devices based on silicon (Si) have long dominated. But with the increasing demand for higher current, voltage, packaging density, and temperature, silicon-based power devices have gradually begun to approach their performance limits. At the same time, wide bandgap (WBG) semiconductors have begun to become a potential alternative technology. Wide bandgap (WBG) materials have excellent semiconductor and physicochemical properties. Silicon carbide (SiC) and gallium nitride (GaN), as typical representatives of third-generation semiconductor materials, can be applied to high-temperature, high-frequency, radiation resistant, and high-power devices, and are emerging materials in the power electronics industry. However, due to the brittle nature of the material, traditional mechanical processing methods are no longer able to meet higher processing quality requirements. At the same time, the high precision and non-contact nature of laser processing make it a suitable processing method. In this context, the article reviews the application of ultra short pulse lasers in processing WBG materials, including SiC and GaN semiconductor materials.

Figure 1 Comparison of Material Properties of Silicon, Silicon Carbide, and Gallium Nitride


Figure 2 Common Processing Methods for Silicon Carbide and Gallium Nitride Materials


Figure 3 Schematic diagram of nanosecond laser and ultrafast laser ablation


Figure 4: Ultra fast laser processing of SiC microstructure: (a) Femtosecond laser microfabrication of rotor; (b) Through-hole array on 3C SiC chip; (c) ArF laser microfabrication of grooves; (d) Femtosecond laser microfabrication of holes


Figure 5: Ultra fast laser ablation of GaN thin film: (a) Photo of a separated LED device; (b-c) patterned GaN thin film attached to TRT substrate; Optical images of purple blue EL emitted by separated LED devices in different bending states (d-f)

The article summarizes the application of ultra short pulse lasers in processing silicon carbide and gallium nitride materials, as well as the physical mechanisms of their interaction with semiconductor materials. Ultra short pulse lasers can effectively reduce thermal effects due to their ultra short operating time. With the increasing demand for efficient and precise manufacturing in the semiconductor industry, ultrafast laser processing technology is expected to be widely applied. Traditional semiconductor material processing methods are often limited by material properties, processing equipment, and other factors, making it difficult to meet specific processing requirements. Ultra fast laser processing technology has higher flexibility and controllability, and can adjust laser parameters according to different processing needs to achieve diversified processing effects. In summary, both picosecond and femtosecond ultra short pulse lasers can be used as the first choice for processing WBG semiconductor materials such as SiC and GaN. Picosecond and femtosecond ultra short pulse lasers have low thermal effects, small heat affected zones, and precise control of processing geometry, making them excellent choices for micro and nano processing.

There are still some difficulties and challenges in the research of ultrafast laser processing of wide bandgap semiconductor materials in the future:

1. At the same laser energy density, femtosecond laser is more precise and picosecond laser is more efficient. For femtosecond pulses, mode locking is almost the only means of implementation, so the cost is relatively lower compared to picosecond lasers. When ultra short pulse lasers interact with transparent media, nonlinear effects such as multiphoton ionization dominate. Femtosecond lasers are more likely to reach nonlinear thresholds and are better suited to the absorption characteristics of materials. Therefore, femtosecond pulse lasers have more advantages in transparent medium processing and other applications. In the selection of laser parameters, factors such as thermal effects, cost, and application scenarios should be comprehensively considered, and an appropriate pulse width should be chosen in a balance between efficiency and accuracy;

2. The development trend of femtosecond laser technology is high-precision processing, but the disadvantage is that it cannot achieve large-scale processing comparable to traditional microelectronics/microelectromechanical manufacturing technology. Exploring new strategies such as parallel multi beam processing and volumetric manufacturing technology to improve processing efficiency is also in line with the standards of large-scale production;

3. Currently, most research focuses on distributing laser energy density in the spot according to Gaussian distribution, and there is little research on other types of beam processing;

4. Whether it is picosecond or femtosecond, the interaction mechanism between ultrafast lasers and semiconductor materials is still unclear, which requires further research on the interaction mechanism and the proposal of more accurate physical models.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Laser direct writing technology for preparing micrometer scale heatable graphene de icing and anti icing surfaces broadens the preparation method of new de icing and anti icing devices

    Research backgroundIn transportation, industrial production, and practical life, icing often brings great troubles, and the most serious is that during the flight of an aircraft, key components once frozen will seriously affect navigation safety.The traditional passive deicing and anti icing strategies for aircraft, such as mechanical vibration and anti freezing liquids, have problems such as inco...

    2023-10-16
    See translation
  • Analysis of Optically Pumped Semiconductor Laser Technology for Promoting the Development of Life Sciences

    Optically Pumped Semiconductor Lasers technology has achieved great success in the market due to its various unique advantages, with over 100000 OPSL devices currently operating in the market. This article introduces the application and new developments of OPSL in the fields of flow cytometry and DNA sequencing.OPSL has the characteristics of flexible wavelength extension, adjustable power, compac...

    2024-02-01
    See translation
  • Swiitol Launches E24 Pro: A Breakthrough in Laser Engraving Technology

    In order to completely change the world of laser engraving, Swiitol has launched the E24 Pro, a 24W integrated laser engraving machine with cutting-edge features and functions. The Swiitol E24 Pro showcases an innovative integrated structure laser engraving machine made of durable aluminum alloy. It is worth noting that the device can be used out of the box without installation, providing users wi...

    2023-11-23
    See translation
  • Laser based ultra precision gas measurement technology

    Laser gas analysis can achieve high sensitivity and selectivity in gas detection. The multi-component capability and wide dynamic range of this detection method help analyze gas mixtures with a wide concentration range. Due to the fact that this method does not require sample preparation or pre concentration, it is easy to adopt in the laboratory or industry.Gas analysis is crucial for determining...

    2024-01-03
    See translation
  • The United States has successfully developed a full 3D printed electric spray engine

    The fully 3D printed electric spray engine is suitable for small satellite in orbit maneuver, and its production cost is only a small part of that of traditional thrusters.Image source: Massachusetts Institute of Technology, USAThe Massachusetts Institute of Technology team recently demonstrated an electric spray engine made entirely of 3D printing technology, which can be propelled by emitting ...

    02-20
    See translation