English

New nanophotonic circuits demonstrate the potential of quantum networks

116
2024-08-14 11:21:40
See translation

The Purdue University team in the United States has captured alkali metal atoms (cesium) in integrated photonic circuits, which can serve as transistors for photons (the smallest energy unit of light). These captured atoms demonstrate for the first time the potential of cold atom integrated nanophotonic circuits to construct quantum networks. The research results were published in the latest issue of Physical Review X.

The newly developed technology utilizes laser cooling to capture atoms in integrated nanophotonic circuits. Light propagates through a tiny photon "line" (a waveguide that is 1/200 thinner than a human hair). These atoms are frozen to minus 273.15 degrees Celsius and are essentially in a static state. At such low temperatures, atoms can be captured by a pulling beam aimed at a photonic waveguide and placed at a distance much shorter than the wavelength of light (approximately 300 nanometers). Within this distance, atoms can effectively interact with photons in the photonic waveguide.

Researchers are conducting experiments
Using the most advanced nanomanufacturing instruments, the team designed a photonic waveguide into a circular structure with a diameter of approximately 30 microns, forming a so-called micro ring resonator. Light will circulate within the micro ring resonator and interact with the captured atoms.

This atomic coupled micro ring resonator is like a transistor for photons. People can use these captured atoms to control the flow of light through circuits. If atoms are in the correct state, photons can be transmitted through circuits. If the atom is in another state, photons will be completely blocked. The stronger the interaction between atoms and photons, the more effective the "gate" of passage and obstruction.

The team captured up to 70 atoms, coupling them all to photons and controlling their transmission on an integrated photonic chip, achieving a "collective" high-intensity interaction with light.

This research result can provide photon links for future distributed quantum computing based on neutral atoms. It can also serve as a new experimental platform for studying light matter interactions or ultra cold molecules.

Source: Opticsky

Related Recommendations
  • Panasonic Launches 3D Short Pulse Fiber Precision Laser Marking Machine LP-ZV

    Recently, Panasonic has launched the latest laser marking technology product - the LP-ZV series, which can provide high-precision and high-efficiency laser marking.Panasonic claims that the LP-ZV series has set a new standard that can bring excellent speed and accuracy in operation, suitable for various applications such as marking text, graphics, barcodes, and 2D code.The company stated that the ...

    2023-11-08
    See translation
  • Super-resolution fluorescence microscopy utilizes fluorescent probes and specific excitation and emission programs

    Super-resolution fluorescence microscopy surpasses the diffraction limit of what used to be a barrier by using fluorescent probes and specific excitation and emission programs. Most SR technologies heavily rely on image computation and processing to retrieve SR information. However, factors such as fluorescence group photophysics, chemical environment of the sample, and optical settings may cause ...

    2024-01-23
    See translation
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    See translation
  • Intel installs the first EUV manufacturing tool that can emit lasers hotter than the sun

    Chip giant Intel announced that it has completed the assembly work of the world's first commercial high numerical aperture (NA) extreme ultraviolet lithography (EUV) scanner. This device greatly improves the resolution and feature scaling of next-generation chips by changing the optical design used to project printed images onto silicon wafers.This lithography equipment weighing 150 tons has been ...

    2024-04-22
    See translation
  • Tongkuai will launch a fully automatic laser drilling machine for interconnected manufacturing equipped with a 6-kilowatt fiber laser

    TRUMPF introduced its TruMatic 5000 manufacturing unit and new SheetMaster automatic loading and unloading device technology at the 2023 Blechexpo Metal Plate Processing Exhibition in Stuttgart, Germany.Users of the new system will benefit from fully automatic laser cutting, punching, and forming capabilities. The new SheetMaster device can achieve fully automated material flow within the manufact...

    2023-10-23
    See translation