English

German laser company Marvel Fusion recently raised 62.8 million euros in funding

1074
2024-10-12 14:58:22
See translation

Recently, Marvel Fusion, a private German company dedicated to commercializing fusion energy through its own laser technology, announced that it has recently raised 62.8 million euros in Series B funding. This round of investors includes HV Capital, b2venture, Earlybird Venture Capital, Athos Venture, Primepulse, Plural Platform, and Deutsche Telekom. Meanwhile, Marvel Fusion has also received additional support from the European Innovation Council (EIC) and will receive up to € 17.5 million in mixed financing options through the EIC Accelerator program.

As of now, Marvel Fusion has attracted over 120 million euros in equity investment, as well as over 150 million euros in public funds and collaborative projects.

Marvel Fusion is located in Munich, Germany and focuses on developing commercial laser fusion processes for power generation. It was co founded by CEO Moritz von der Linden, CTO Georg Korn, and others in 2019. Marvel Fusion and Colorado State University (CSU) are in a partnership to build a new $150 million laboratory in Fort Collins, supported by a public-private partnership under the US Department of Energy's LaserNetUS program.

In addition, the company is also partnering with French engineering giant Thales in 2022 to upgrade Romania's laser infrastructure - nuclear physics facilities.

As early as July this year, Marvel Fusion received support for a project called "Utilizing Short Pulse High Intensity Laser and Nanostructured Fuel Targets to Achieve Commercial Fusion Energy". Unlike most companies on the market seeking to commercialize laser fusion, Marvel Fusion's approach is based on femtosecond laser pulses. According to foreign media reports, the demonstration facility will be based on two 100J femtosecond lasers, and the on-site foundation construction is scheduled to begin later this month. The experiment is expected to start in early 2027.

In addition, the CEO of Marvel Fusion stated that the fuel the company plans to use has some key advantages over the black cavity target used in the national ignition breakthrough experiment in December 2022. It is reported that the Marvel Fusion targets are based on silicon nanostructures, which means they can be mass-produced using relatively traditional semiconductor lithography techniques.

If the initial experiments at Colorado State University facilities are successful, the plan is to increase the number of lasers and their individual energy output in a larger facility over the next decade, followed by the development of a prototype of a kilojoule light source operating at a frequency of 10Hz.

Source: OFweek

Related Recommendations
  • China University of Science and Technology proposes composite cold field 3D printing technology for liquid crystal elastomers

    Recently, Associate Professor Li Mujun from the School of Engineering Sciences and the Institute of Humanoid Robotics at the University of Science and Technology of China, together with researchers such as Professor Zhang Shiwu, has made significant progress in the field of intelligent material 3D printing. The research team proposed composite cold field 3D printing technology and successfully pre...

    02-25
    See translation
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    See translation
  • Professor Hu Yanlei from the University of Science and Technology of China, Nat Commun Preparation of Durable Janus Thin Films with Mode Switching by Femtosecond Laser

    Janus film is widely used in fields such as oil-water separation, water mist collection, and wearable patches due to its unique transmembrane directional water transport function. The function of traditional Janus thin films comes from the thickness direction of microchannels and single-sided chemical coating modifications (single-sided hydrophilic and hydrophobic modification of hydrophobic and h...

    2024-02-22
    See translation
  • Toshiba has developed the world's highest precision 99.9% LiDAR technology

    Recently, Toshiba announced that in the field of LiDAR lidar for distance measurement, it has developed a technology that can track vehicles, people, and other objects with 99.9% accuracy, achieving the world's highest accuracy. And only using LiDAR to collect data can achieve 98.9% object recognition.In addition, the detection distance in rainstorm and dense fog environments has been increased by...

    2023-10-06
    See translation
  • Chinese researchers enhance perovskite lasers by suppressing energy loss

    Limiting Auger recombination enables “record” quasi-continuous wave laser output.For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that...

    08-25
    See translation