English

German laser company Marvel Fusion recently raised 62.8 million euros in funding

1103
2024-10-12 14:58:22
See translation

Recently, Marvel Fusion, a private German company dedicated to commercializing fusion energy through its own laser technology, announced that it has recently raised 62.8 million euros in Series B funding. This round of investors includes HV Capital, b2venture, Earlybird Venture Capital, Athos Venture, Primepulse, Plural Platform, and Deutsche Telekom. Meanwhile, Marvel Fusion has also received additional support from the European Innovation Council (EIC) and will receive up to € 17.5 million in mixed financing options through the EIC Accelerator program.

As of now, Marvel Fusion has attracted over 120 million euros in equity investment, as well as over 150 million euros in public funds and collaborative projects.

Marvel Fusion is located in Munich, Germany and focuses on developing commercial laser fusion processes for power generation. It was co founded by CEO Moritz von der Linden, CTO Georg Korn, and others in 2019. Marvel Fusion and Colorado State University (CSU) are in a partnership to build a new $150 million laboratory in Fort Collins, supported by a public-private partnership under the US Department of Energy's LaserNetUS program.

In addition, the company is also partnering with French engineering giant Thales in 2022 to upgrade Romania's laser infrastructure - nuclear physics facilities.

As early as July this year, Marvel Fusion received support for a project called "Utilizing Short Pulse High Intensity Laser and Nanostructured Fuel Targets to Achieve Commercial Fusion Energy". Unlike most companies on the market seeking to commercialize laser fusion, Marvel Fusion's approach is based on femtosecond laser pulses. According to foreign media reports, the demonstration facility will be based on two 100J femtosecond lasers, and the on-site foundation construction is scheduled to begin later this month. The experiment is expected to start in early 2027.

In addition, the CEO of Marvel Fusion stated that the fuel the company plans to use has some key advantages over the black cavity target used in the national ignition breakthrough experiment in December 2022. It is reported that the Marvel Fusion targets are based on silicon nanostructures, which means they can be mass-produced using relatively traditional semiconductor lithography techniques.

If the initial experiments at Colorado State University facilities are successful, the plan is to increase the number of lasers and their individual energy output in a larger facility over the next decade, followed by the development of a prototype of a kilojoule light source operating at a frequency of 10Hz.

Source: OFweek

Related Recommendations
  • ELI and LLNL strengthen transatlantic large-scale laser cooperation

    Lawrence Livermore National Laboratory (LLNL) and the Extreme Light Infrastructure (ELI) European Research Infrastructure Consortium (ERIC) have announced that they have signed a new Memorandum of Understanding. This builds on their existing decade of strategic collaboration to advance high-power laser technology.“We are looking forward to expanding our existing collaborations with ELI on areas su...

    07-09
    See translation
  • Dark Solitons Discovered in Ring Semiconductor Lasers

    Dark solitons - the extinction region in a bright background - spontaneously form in a ring semiconductor laser. Observations conducted by an international research group may lead to improvements in molecular spectroscopy and integrated optoelectronics.Frequency comb - a pulse laser that outputs light at equidistant frequencies - is one of the most important achievements in the history of laser ph...

    2024-02-01
    See translation
  • Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

    A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirecti...

    2024-04-29
    See translation
  • Compact short pulse laser with an efficiency of up to 80%

    The research team from the University of Stuttgart and Stuttgart Instruments GmbH has published a groundbreaking research result in the journal Nature - a new compact ultra short pulse laser. This device achieves a significant improvement in efficiency while maintaining excellent precision, with its energy conversion efficiency reaching more than twice that of existing common devices. In addition,...

    11-12
    See translation
  • Researchers use lasers to measure and manipulate magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-03-05
    See translation