English

The Boston University research team developed a high-throughput single-cell sorting technique based on stimulated Raman spectroscopy

826
2023-09-07 14:47:36
See translation

A Boston University research project has successfully developed an innovative single-cell sorting technique that uses stimulated Raman spectroscopy to replace traditional fluorescent labeling and achieve labeling free and non-destructive single-cell measurements.

This technology is expected to have a profound impact in the fields of cytology, microbiology and biomedical research, allowing scientists to directly capture pathogens or cells with specific metabolic characteristics from the natural environment.

Stimulated Raman is used to separate cells

Research background

Flow cytometry is a well-established technique for counting and characterizing cells, including blood cells, stem cells, and cancer cells in biomedicine. The idea is to illuminate the cells as they pass through a channel narrow enough to force them to roughly line up, usually after labeling them with a fluorescent label.

This technique typically uses fluorescent labeling to distinguish and identify different types of cells, as fluorescent labeling allows scientists to determine a cell's identity by detecting the fluorescent signal it emits. Then, by analyzing these signals, high-throughput single-cell sorting and analysis can be performed.

However, traditional flow cytometry has some disadvantages, one of which is that fluorescent labeling may affect the biological activity of cells and require additional experimental steps. Therefore, researchers have been looking for labeling free and non-invasive methods for single cell measurement and sorting, and stimulated Raman spectroscopy is one of the innovative directions.

Stimulated Raman spectroscopy

The Boston University research team used stimulated Raman spectroscopy, an innovative approach that allows individual cells to be measured for their unique chemical fingerprints without the need for fluorescent labeling. The technique utilizes a 532 nm laser monopulse to focus light on the target cell and push it into the collector, enabling high-throughput single-cell sorting.

Experimental result

In experiments, the technique was applied to a mixture of 1 micron polymer beads, which were sorted approximately 14 times per second, achieving approximately 95% purity and 98% throughput. The technique can also be used for sorting fixed bacteria. In addition, tests on active yeast cells showed that the sorted cells were still able to maintain healthy growth.

Application prospect

The new stimulated Raman spectral sorting technique provides scientists with an innovative, high-throughput way to classify cells based on their chemical composition within them. This has broad applications for microbiology, biomedical research, and the direct capture of pathogens or cells with specific metabolic characteristics from the natural environment. This technology is expected to advance the development of cytology, microbiology and biomedical research, providing new tools and methods for medical diagnosis and life science research.

Source: Chinese Optical Journal Network

Related Recommendations
  • Implementation of 20W high-power fiber optic frequency comb by the Institute of Physics, Chinese Academy of Sciences

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification.However, due to the una...

    2023-10-11
    See translation
  • Showcasing the world's fastest photonics alignment system for SiPh chips on Photonics West

    With its proprietary fast multi-channel photon alignment algorithm and professional high-precision machinery, PI helps customers improve production efficiency to participate in the rapidly growing silicon photonics market. Over the past decade, PI has been continuously expanding its range of automatic photon alignment engines and will launch new systems at both ends of the spectrum in this year's ...

    2024-01-19
    See translation
  • A replica of an arcade made with a 3D printer in the 1970s

    A game museum has 3D printed a replica of a historic arcade computer space. The arcade museum in Stroud, Gloucestershire lacks the first commercial arcade video game. They collaborated with Heber company to create a real replica. Neil Thomas, the director of the arcade museum, said that because it is a replica, not an original, they are not "afraid" of letting people play with it.A spokesperson...

    2024-05-29
    See translation
  • Laser Photonics cleaning technology simplifies the removal of biofilms in industrial environments

    Laser Photonics Corporation is a leading global industrial developer of CleanTech laser systems for laser cleaning and other material applications, highlighting a key application of its CleanTech laser system.Wayne Tupuola, CEO of Laser Photonics, commented, "Our CleanTech laser cleaning system provides an efficient and cost-effective method for removing biofilms from various materials and surface...

    2023-09-20
    See translation
  • Revealing the essence of optical vortices: a step towards understanding the interaction between light and matter

    In a groundbreaking scientific study published in Volume 13 of the Scientific Report, researchers reported on the results of Young's double slit interference experiment using oscillating vortex radiation under a photon counting system. The experiment involves using a spiral oscillator to emit second harmonic radiation in the ultraviolet range. Using an ultra narrow bandpass filter in the low curre...

    2023-12-29
    See translation