English

The Boston University research team developed a high-throughput single-cell sorting technique based on stimulated Raman spectroscopy

1168
2023-09-07 14:47:36
See translation

A Boston University research project has successfully developed an innovative single-cell sorting technique that uses stimulated Raman spectroscopy to replace traditional fluorescent labeling and achieve labeling free and non-destructive single-cell measurements.

This technology is expected to have a profound impact in the fields of cytology, microbiology and biomedical research, allowing scientists to directly capture pathogens or cells with specific metabolic characteristics from the natural environment.

Stimulated Raman is used to separate cells

Research background

Flow cytometry is a well-established technique for counting and characterizing cells, including blood cells, stem cells, and cancer cells in biomedicine. The idea is to illuminate the cells as they pass through a channel narrow enough to force them to roughly line up, usually after labeling them with a fluorescent label.

This technique typically uses fluorescent labeling to distinguish and identify different types of cells, as fluorescent labeling allows scientists to determine a cell's identity by detecting the fluorescent signal it emits. Then, by analyzing these signals, high-throughput single-cell sorting and analysis can be performed.

However, traditional flow cytometry has some disadvantages, one of which is that fluorescent labeling may affect the biological activity of cells and require additional experimental steps. Therefore, researchers have been looking for labeling free and non-invasive methods for single cell measurement and sorting, and stimulated Raman spectroscopy is one of the innovative directions.

Stimulated Raman spectroscopy

The Boston University research team used stimulated Raman spectroscopy, an innovative approach that allows individual cells to be measured for their unique chemical fingerprints without the need for fluorescent labeling. The technique utilizes a 532 nm laser monopulse to focus light on the target cell and push it into the collector, enabling high-throughput single-cell sorting.

Experimental result

In experiments, the technique was applied to a mixture of 1 micron polymer beads, which were sorted approximately 14 times per second, achieving approximately 95% purity and 98% throughput. The technique can also be used for sorting fixed bacteria. In addition, tests on active yeast cells showed that the sorted cells were still able to maintain healthy growth.

Application prospect

The new stimulated Raman spectral sorting technique provides scientists with an innovative, high-throughput way to classify cells based on their chemical composition within them. This has broad applications for microbiology, biomedical research, and the direct capture of pathogens or cells with specific metabolic characteristics from the natural environment. This technology is expected to advance the development of cytology, microbiology and biomedical research, providing new tools and methods for medical diagnosis and life science research.

Source: Chinese Optical Journal Network

Related Recommendations
  • Coherent launches 12 kW sheet metal laser cutting processing head

    Recently, Coherent, an industrial laser technology giant, announced the launch of a new 2D laser cutting head - CUT12, which combines excellent performance, high versatility, and profound value for the global flat cutting market. Image source: CoherentThe CUT12 sheet metal laser cutting processing head is perfectly compatible with fiber lasers in the power range of 4 kW-12 kW (continuous wave),...

    2024-10-29
    See translation
  • Linear Pluggable Optical Device Alliance Definition Linear Pluggable Optical Device Specification

    A group of network, semiconductor, and optical companies formed the LPO MSA to develop the network equipment and optical module specifications required to implement a wide ecosystem of interoperable LPO solutions.These specifications address the industry challenges of reducing power consumption, cost, and latency while improving the reliability of high-speed optical interconnections.Accelink, AMD...

    2024-03-26
    See translation
  • Emerson launches a new type of laser welding machine that can efficiently and flexibly process medical precision components

    Recently, Emerson, the global leader in industrial automation, launched the all-new Branson ™ The GLX-1 laser welding machine, with its outstanding flexibility and innovative technology, accurately meets the urgent market demand for connecting small, complex or delicate plastic components. Its compact volume and modular design make it easy to integrate into the ISO-8 cleanroom environment, while t...

    2024-06-04
    See translation
  • Jenoptik invests 100 million euros to open new factory

    On May 30th, Jenoptik announced on its official WeChat account that after approximately two and a half years of construction, its new factory in Dresden, Germany, with an investment of nearly 100 million euros, has officially opened. This is the largest single investment project in Jenoptik's recent history.Jenoptik President and CEO Dr. Stefan Traeger stated that this new factory will make Dresde...

    06-05
    See translation
  • Laser Photonics wins a large order from Lufthansa Technologies subsidiary

    Recently, American laser cleaning system developer Laser Photonics announced that the company has successfully secured an order for a cleaning technology laser cleaning system from Lufthansa Technik Puerto Rico, a technology subsidiary of Lufthansa, the largest aviation group in Europe.Lufthansa Technik is the world's largest independent provider dedicated to providing maintenance, repair, and com...

    2023-12-19
    See translation