English

Southeast University makes new progress in quantum efficiency research of van der Waals light-emitting diodes

41
2024-10-28 11:56:42
See translation

Recently, Professor Ni Zhenhua from the School of Electronic Science and Engineering at Southeast University, Professor Lv Junpeng from the School of Physics, Professor Liu Hongwei from the School of Physical Science and Technology at Nanjing Normal University, and Professor Zhou Peng from the School of Microelectronics at Fudan University collaborated to propose a van der Waals light-emitting diode based on two-dimensional perovskite and combined with low-temperature van der Waals transfer technology, achieving a quantum efficiency of over 10% at room temperature. The related results were published in Science Advances under the title "Van der Waals integrated single functional light emitting diodes exceeding 10% quantum efficiency at room temperature".

At present, the main bottleneck in the development of optoelectronic integrated chips is the lack of high-performance on-chip light sources. Among numerous material systems, two-dimensional semiconductor materials have become an ideal material for building new generation optoelectronic systems and breaking through the bottleneck of high-performance on-chip light sources due to their excellent optoelectronic properties and integration advantages. Although significant progress has been made in two-dimensional semiconductor based light-emitting diode devices at present, their luminous efficiency at room temperature and high injection state is generally low, which limits their practical application in optoelectronic chips.

This study utilizes the characteristics of two-dimensional semiconductor materials with multiple quantum wells and combines them with low-temperature van der Waals transfer technology to achieve on-chip integrated high-efficiency light-emitting diodes. By utilizing the advantages of the two-dimensional perovskite multi quantum well structure and high fluorescence quantum yield, combined with the low potential barrier height of the graphene/two-dimensional perovskite interface, an external quantum efficiency of over 10% at room temperature has been achieved through efficient carrier tunneling recombination process, which is the highest level of current van der Waals light-emitting diodes. This scheme has universality and can be extended to other layered two-dimensional materials. This achievement lays a solid foundation for the future development of large-area, high-efficiency, high brightness, and on-chip integrated two-dimensional semiconductor light-emitting devices.

Ni Zhenhua, Lv Junpeng, Liu Hongwei, and Zhou Peng are the co corresponding authors of this article. Hu Zhenliang, a postdoctoral fellow at the School of Physics, Southeast University, and Fu Qiang, a doctoral student, are co first authors of this article. This work is supported by projects such as the National Key Research and Development Program, the National Natural Science Foundation of China, and the Jiangsu Provincial Natural Science Foundation.

Source: Opticsky

Related Recommendations
  • Innovative laser technology: a novel quantum cavity model for superradiance emission

    Quantum optics is a complex field where theoretical and experimental physicists collaborate to achieve breakthroughs in explaining subatomic level phenomena.Recently, Farokh Mivehvar from the University of Innsbruck used the most comprehensive model in quantum optics, the Dicke model, to study the interaction between two groups of atoms in a quantized field. This new study makes it possible to obs...

    2024-03-16
    See translation
  • IPG introduces a new dual-beam laser with the highest single-mode core power

    From September 12 to 14, 2023, IPG Photonics, a well-known fiber laser technology leader in the United States, will showcase its latest innovative laser solutions at the Battery Show in Michigan, USA. IPG will also showcase industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding spe...

    2023-09-14
    See translation
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    See translation
  • Surface coupled laser technology manufacturer, secured £ 2.94 million in financing

    Recently, renowned surface coupled laser technology supplier Vector Photonics announced that it has received £ 1.667 million in equity investment and £ 1.27 million in additional research funding for the continued commercialization of its unique surface coupled laser (SCL) technology. Surface coupled lasers have completely changed semiconductor laser manufacturing, improving the performance of var...

    2024-06-14
    See translation
  • Scientists use glass to create femtosecond lasers

    Image source: Federal Institute of Technology in Lausanne, SwitzerlandScience and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glas...

    2023-09-28
    See translation