English

TriLite has partnered with AMS OSram to develop AR smart glasses displays

1279
2023-09-06 15:43:20
See translation

TriLite has announced a technical collaboration with ams OSRAM, a global leader in smart sensors and transmitters. Ams Osram will supply its sub-assembled RGB laser diode to "light up" TriLite's Trixel® 3 laser beam scanner (LBS), the world's smallest AR smart glasses projection display.

The award-winning Trixel® 3 LBS offers breakthrough compactness and light weight, as well as a bright and accurate display. It has ultra-low power consumption for all-day use, enabling excellent image quality. Trixel 3 provides AR capabilities for smart glasses and a wide range of consumer applications.

Dr. Peter Weigand, CEO of TriLite, said: "Our ecosystem strategy focuses on partnering with world leaders to ensure high quality and reliable manufacturing at scale. "We chose AMS Osram as one of our technology partners because its laser light source delivers best-in-class power and efficiency, fully meeting the brightness, contrast and high performance requirements of our Trixel 3 LBS projectors."

TriLite is designed for seamless mass manufacturing, incorporating custom standard components and utilizing state-of-the-art high-volume production equipment. The result is an ultra-compact optical display engine with a brightness of 15 lumens that ensures easy readability even in direct sunlight. Its low system latency enables AR images to naturally blend with the wearer's surroundings and movements, providing an immersive AR experience that exceeds consumer expectations. In addition, Trixel 3 is fully compatible with state-of-the-art waveguides and does not require any relay optics, effectively saving space and weight.

Trilite's ultra-compact, lightweight Trixel® 3 Laser Beam Scanner (LBS) optical display engine combines a single 2D MEMS mirror, all optical components, and a unique trajectory control module (TCM) that moves the complexity of optical modules from hardware to software. LBS modules weigh less than 1.5g and are less than 1cm in volume 3.

Ams OSram joins TriLite's rapidly expanding manufacturing partner ecosystem. Its expertise and industry-leading laser diodes combined with high-volume manufacturing capabilities further enhance TriLite's vision for the future of AR smart glasses.

Source: Laser Network

Related Recommendations
  • Aerosol jet printing can completely change the manufacturing of microfluidic devices

    Surface acoustic wave technology is renowned for its high precision and fast driving, which is crucial for microfluidics and affects a wide range of research fields. However, traditional manufacturing methods are time-consuming, complex, and require expensive cleanroom facilities.A new method overcomes these limitations by utilizing aerosol jet printing to create customized equipment with various ...

    2024-02-02
    See translation
  • EO Technologies from South Korea enters the glass substrate processing market

    Recently, EO Technologies, a well-known semiconductor laser processing equipment manufacturer in South Korea, is emerging in the glass substrate processing market.It is understood that EO Technologies is entering the glass substrate TGV market based on its UV laser drilling equipment originally used in PCB substrate technology. TGV technology is the core process for drilling holes inside glass sub...

    2024-06-18
    See translation
  • New types of lenses in optics: Researchers develop hybrid achromatic lenses with high focusing efficiency

    Researchers at the University of Illinois at Urbana Champaign have developed compact visible wavelength achromatic mirrors using 3D printing and porous silicon, which are crucial for miniaturization and lightweight optical devices. These high-performance hybrid micro optical devices can achieve high focusing efficiency while minimizing volume and thickness. In addition, these microlenses c...

    2023-12-11
    See translation
  • Shanghai Optical Machinery Institute has made progress for the first time in hard X-ray zoom beam imaging

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, completed the research of hard X-ray zoom beam splitting imaging on the micro focus X-ray source for the first time, and solved the problem of beam splitter limitation in the hard X-ray band. The related achievements are titled "Bifocal photo scene imaging in the...

    2024-04-08
    See translation
  • The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

    Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel. The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although ...

    2023-09-04
    See translation