English

An innovative technology that can make light "bend"

83
2024-11-11 13:51:46
See translation

A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published in the latest issue of the journal Nature Physics under the title "Energy Transport in Diffuse Waveguides".

The research team pointed out that clouds, snow, and other white materials have similar effects on light: when photons shine on the surface of these objects, they are almost unable to penetrate and scatter in all directions. For example, when sunlight shines on cumulonimbus clouds, the light will reflect from the top of the cloud, making this part of the cloud appear bright and white; However, there is very little light reaching the bottom of the cloud, resulting in a dark color at the bottom of the cloud.

In order to simulate this natural phenomenon, the research team used opaque white materials and 3D printing technology to manufacture a new type of material, and constructed some small tunnels inside the material. When light shines on this material, it enters these tunnels and scatters. However, unlike scattering in nature, photons do not randomly scatter in all directions, but are guided back into the tunnel by opaque materials. Through this method, they successfully created a series of materials that can guide light in an orderly manner.

Compared with traditional solid materials, this new material increases the transmittance of light by more than two orders of magnitude and enables light to propagate in curved paths. Although this material cannot achieve long-distance transmission like optical fibers, its method is simple and cost-effective, with significant advantages.

The research team emphasizes that this technique of bending light can utilize existing semi transparent structures, such as tendons and fluids within the spine, to open up new avenues for medical imaging. The new technology can also be used to guide heat and neutrons, suitable for multiple engineering fields such as cooling systems and nuclear reactors.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Laser blasting promises to solve global plastic problem

    Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.This discovery has the potential to improve the way we handle plastics that...

    2024-07-16
    See translation
  • Research has found that inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers

    According to research from Busan National University, inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers.The perovskite of interest is CsPbBr3, which must form "nanosheets" within the specific structure invented by the Busan team to obtain sufficient laser gain.It is not that the laser has been achieved, as the research project aims to cha...

    2024-01-04
    See translation
  • NLIGHT announces the launch of two new laser technologies at The Battery Show North America

    Recently, nLIGHT, a leading company in the fields of fiber optics and semiconductor lasers, announced the launch of two new laser technologies at The Battery Show North America: WELDForm and Automatic Parameter Adjustment (APT), aimed at meeting the dynamic needs of advanced battery manufacturing customers. In order to provide high-quality laser welding technology to the rapidly growing electric...

    2024-10-15
    See translation
  • Integra Optics launches groundbreaking XGS-PON and GPON combined OLT SFP+optical transceivers

    Infinite Electronics brand and innovative operator level global supplier of fiber optic components, Integra Optics, announced the launch of its latest innovative product, the XGS-PON and GPON combination OLT SFP+BiDi optical transceiver module. This module integrates the passive optical network OLT and GPON OLT optical modules of XG (S), promoting seamless network rate deployment within the optica...

    2024-04-11
    See translation
  • New insights into the interaction between femtosecond laser and living tissue

    The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photos...

    2024-06-07
    See translation