English

Research Progress: Extreme Ultraviolet Photolithography

1482
2024-12-09 14:02:28
See translation

Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy and lower defect rates than previous lithography methods.

Recently, Dimitrios Kazazis, Yasin Ekinci, and others from the Paul Scherrer Institute in Switzerland published an article in Nature Reviews Methods Primers, comprehensively exploring the technological evolution from deep ultraviolet to extreme ultraviolet (EUV) lithography, with a focus on innovative methods for source technology, resist materials, and optical systems developed to meet the strict requirements of mass production.

Starting from the basic principles of photolithography, the main components and functions of extreme ultraviolet EUV scanners are described. It also covers exposure tools that support research and early development stages. Key themes such as image formation, photoresist platforms, and pattern transfer were explained, with a focus on improving resolution and yield. In addition, ongoing challenges such as random effects and resist sensitivity have been addressed, providing insights into the future development direction of extreme ultraviolet lithography EUVL, including high numerical aperture systems and novel resist platforms.

The article aims to provide a detailed review of the current extreme ultraviolet lithography EUVL capabilities and predict the future development and evolution of extreme ultraviolet lithography EUVL in semiconductor manufacturing.

 



Figure 1: Basic steps of photolithography process.



Figure 2: Extreme ultraviolet scanner and its main components.



Figure 3: Process window of photoresist.



Figure 4: Contrast curve of chemically amplified resist exposed to extreme ultraviolet light.



Figure 5: Typical faults in photolithography patterning of dense line/spacing patterns and contact hole arrays.



Figure 6: In 2025-2026, with the high numerical aperture, NA systems will enter mass production of high-volume manufacturing (HVM). In the next decade, lithography density scaling will continue to increase.



Figure 7: Chip yield curves plotted as a function of source power divided by dose for high numerical aperture NA and low numerical aperture NA extreme ultraviolet scanners.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • A new type of all-optical intelligent spectrometer

    Recently, Professor Xu Tingfa's research team from the School of Optoelectronics at Beijing Institute of Technology and Assistant Professor Lin Xing's team from Tsinghua University jointly developed a new type of Opto Intelligence Spectrometer (OIS). The device is based on diffractive neural network technology and achieves precise spectral reconstruction under spatially coherent or spatially incoh...

    2024-07-22
    See translation
  • AMCM 8 laser M 8K metal 3D printing equipment is about to be launched, equipped with 8 lasers

    In October 2023, Germany's AMCM (EOS, a global technology leader in industrial grade additive manufacturing) announced the upcoming launch of the M 8K metal 3D printing equipment. The device will be equipped with 8 lasers, with a construction volume of 800 x 800 x 1200 millimeters, nearly four times the size of AMCM's previously launched M 4K metal 3D printing device on the market.ArianeGroup's ho...

    2023-10-19
    See translation
  • Photonics leaders call for EU to implement € 2 billion plan

    Photonics21 has released a new position paper urging the European Commission to create a € 2 billion ($2.35 billion) independent plan for photonics in the 2028-2034 budget, and warning that Europe must 'invest in light, otherwise it will fall into darkness'.Channelled through the European Union’s Multiannual Financial Framework (MFF), the funding is designed to unlock a further €6–8 billion from i...

    10-14
    See translation
  • The physicist who built the ultrafast "attosecond" laser won the Nobel Prize

    Pierre Agostini, Ferenc Krausz, and Anne L'Huillier won the award for their ultra short optical pulses, which made close research on electrons possible.Ferenc Klaus, Anne Lullier, and Pierre Agostini (from left to right)Image sources: BBVA Foundation, Kenneth Ruona/Lund University, Ohio State UniversityThis year's Nobel Prize in Physics was awarded to three physicists - Pierre Agostini of Ohio St...

    2023-10-09
    See translation
  • Shanghai Optics and Fine Mechanics Institute has made progress in the new holographic imaging technology of frequency domain direct sampling

    Recently, a research team from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new holographic imaging technology using frequency domain direct sampling. The relevant results were published in Optics Letters under the title of "Fourier inspired single pixel holography".Digital holography is a tech...

    03-20
    See translation