English

Research Progress: Extreme Ultraviolet Photolithography

1450
2024-12-09 14:02:28
See translation

Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy and lower defect rates than previous lithography methods.

Recently, Dimitrios Kazazis, Yasin Ekinci, and others from the Paul Scherrer Institute in Switzerland published an article in Nature Reviews Methods Primers, comprehensively exploring the technological evolution from deep ultraviolet to extreme ultraviolet (EUV) lithography, with a focus on innovative methods for source technology, resist materials, and optical systems developed to meet the strict requirements of mass production.

Starting from the basic principles of photolithography, the main components and functions of extreme ultraviolet EUV scanners are described. It also covers exposure tools that support research and early development stages. Key themes such as image formation, photoresist platforms, and pattern transfer were explained, with a focus on improving resolution and yield. In addition, ongoing challenges such as random effects and resist sensitivity have been addressed, providing insights into the future development direction of extreme ultraviolet lithography EUVL, including high numerical aperture systems and novel resist platforms.

The article aims to provide a detailed review of the current extreme ultraviolet lithography EUVL capabilities and predict the future development and evolution of extreme ultraviolet lithography EUVL in semiconductor manufacturing.

 



Figure 1: Basic steps of photolithography process.



Figure 2: Extreme ultraviolet scanner and its main components.



Figure 3: Process window of photoresist.



Figure 4: Contrast curve of chemically amplified resist exposed to extreme ultraviolet light.



Figure 5: Typical faults in photolithography patterning of dense line/spacing patterns and contact hole arrays.



Figure 6: In 2025-2026, with the high numerical aperture, NA systems will enter mass production of high-volume manufacturing (HVM). In the next decade, lithography density scaling will continue to increase.



Figure 7: Chip yield curves plotted as a function of source power divided by dose for high numerical aperture NA and low numerical aperture NA extreme ultraviolet scanners.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Korean researchers use laser ablation to create deformable micro supercapacitors

    Recently, a research team from the Korea Institute of Industrial Technology and POSTECH University successfully utilized laser sintering pattern technology to create a deformable micro supercapacitor (MSCs), specifically designed to provide energy storage solutions for soft electronic devices. This breakthrough meets the urgent need for efficient energy storage systems in stretchable devices in...

    2024-05-30
    See translation
  • New types of lenses in optics: Researchers develop hybrid achromatic lenses with high focusing efficiency

    Researchers at the University of Illinois at Urbana Champaign have developed compact visible wavelength achromatic mirrors using 3D printing and porous silicon, which are crucial for miniaturization and lightweight optical devices. These high-performance hybrid micro optical devices can achieve high focusing efficiency while minimizing volume and thickness. In addition, these microlenses c...

    2023-12-11
    See translation
  • 43 seconds! Completion of laser welding of a new energy vehicle body

    March 8, in the three sessions of the 14th National People's Congress, the second “representative channel” focused on interviews, the National People's Congress, the party secretary of HGTECH Science and Technology, Chairman of the Board of Directors Ma Xinqiang, said in response to a reporter's question, in order to crack the “strangle  “technical problems, HGTECH over the years in the field of h...

    03-11
    See translation
  • Research progress on aerospace materials and anti ablation coatings: a review

    India B R. Dr. Jalandal Ambedkar National Institute of Technology and the Indian Institute of Technology reviewed and reported on the research progress of aerospace materials and anti ablation coatings. The related paper was published in Optics&Laser Technology under the title "Progress in aerospace materials and ablation resistant coatings: A focused review".a key:1. A comprehensive overview ...

    2024-11-21
    See translation
  • Laser Photonics Corporation acquires Control Micro Systems through asset purchase agreement

    Recently, Laser Photonics Corporation (LPC), a laser cleaning equipment developer listed on NASDAQ in the United States, announced that the company has signed a final agreement to acquire Control Micro Systems, Inc. (CMS) through an Asset Purchase Agreement (APA), but the financial details of the transaction have not yet been disclosed.At present, LPC's market value has shrunk by 70%, and it is de...

    2024-11-05
    See translation