English

A German research team has developed a new type of perovskite stacked battery

1254
2025-02-08 16:14:20
See translation

According to relevant media reports, a research team from the Helmholtz Center in Berlin, Germany, and Humboldt University has jointly developed a new type of perovskite stacked battery. This battery has broken the world record for similar batteries with a photoelectric conversion efficiency of 24.6%.

 



In the solar cell family, in addition to silicon-based solar cells, there are also thin-film solar cells such as copper, indium, gallium, and selenium based thin-film solar cells (CIGS cells). The production of this type of battery requires very little energy and materials, so its impact on the environment is also minimal.

The team combined CIGS cells as the bottom with perovskite based top cells to develop a new stacked solar cell. By optimizing the contact layer between the top and bottom batteries, they increased the energy efficiency of the new battery to 24.6%. This energy efficiency value has been certified as a new world record by the Fraunhofer Institute for Solar Energy Systems in Germany.

The team also developed CIGS sub cells and contact layers, and used high-performance cluster systems. This system can accurately deposit perovskite and contact layers in a vacuum environment, providing a solid guarantee for the high efficiency of new batteries. They believe that in the future, the photovoltaic conversion efficiency of new perovskite stacked solar cells is expected to exceed 30%.

Source: opticsky

Related Recommendations
  • Jenoptik Jenoptik Group's new factory officially completed in Germany

    After two and a half years of construction, Jenoptik Jenoptik Group's new factory in Dresden, Germany has been officially completed, marking the company's largest single investment in recent times. Jenoptik stated that by expanding its production and research and development capabilities in micro optical devices, it will provide high-precision sensor production technology for high-performance chip...

    05-16
    See translation
  • Lightmatter announces the first 16 wavelength bidirectional link on single-mode fiber

    Lightmatter, a Boston-based startup developing silicon photonics hardware aimed at AI and high-performance computing, has announced a 16-wavelength bidirectional Dense Wavelength Division Multiplexing optical link operating on one strand of standard single-mode (SM) fiber.Powered by Lightmatter’s Passage interconnect and Guide laser technologies, this development “shatters previous limitations in ...

    08-22
    See translation
  • New, low-cost, and high-efficiency photonic integrated circuits

    The rapid development of photonic integrated circuits (PICs) has combined multiple optical devices and functions on a single chip, completely changing optical communication and computing systems.For decades, silicon-based PICs have dominated the field due to their cost-effectiveness and integration with existing semiconductor manufacturing technologies, despite their limitations in electro-optic ...

    2024-05-10
    See translation
  • The Innovation Road of Laser Welding Automation Production Line for New Energy Vehicle Motor stators

    With the increasing global attention to environmental protection and sustainability, new energy vehicles have become an important trend in the automotive industry. In this context, the production method of the core component of new energy vehicles - the motor stator - has also undergone profound changes. Welding, as a key manufacturing process, has brought disruptive innovation to the manufacturin...

    2024-02-28
    See translation
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    See translation