English

The United States has successfully developed a full 3D printed electric spray engine

1088
2025-02-20 15:02:34
See translation

The fully 3D printed electric spray engine is suitable for small satellite in orbit maneuver, and its production cost is only a small part of that of traditional thrusters.


Image source: Massachusetts Institute of Technology, USA


The Massachusetts Institute of Technology team recently demonstrated an electric spray engine made entirely of 3D printing technology, which can be propelled by emitting droplets. This innovative device not only produces quickly, but also has a much lower cost than traditional thrusters. It utilizes commercially available 3D printing materials and technology, and can even complete printing in space. The relevant paper was published in the journal Advanced Science.

The working principle of the electric spray engine is to apply an electric field to the conductive liquid to generate a high-speed micro droplet jet to propel the spacecraft. This type of micro engine is particularly suitable for small satellites, such as cube satellites. Compared with chemical fuel rockets, electric spray engines are more efficient in the use of propellants, so they are more suitable for performing precise in orbit maneuver tasks. Although the thrust generated is small, the required thrust level can be achieved by paralleling multiple electric spray launchers.

The team has developed a modular process that combines two 3D printing methods, solving the challenges encountered in manufacturing complex equipment composed of macroscopic and microscopic components. They use restoration photopolymerization printing (VPP) technology, including digital light processing technology, to shine light onto photosensitive resin through a chip sized projector and solidify layer by layer to form high-resolution 3D structures. In addition, they also designed a clamping mechanism to connect various components, ensuring the water tightness of the equipment. This allows astronauts to directly print satellite engines in space without relying on equipment sent from Earth.

The printed thruster contains 32 electric spray emitters, which work together to ensure stable and uniform propellant jet. The final prototype equipment is comparable to or even better than existing equipment in terms of thrust performance.

Further research has shown that by adjusting the pressure of the propellant and the voltage applied to the engine, the droplet flow rate can be controlled to achieve a wider range of thrust output.

The researchers said that this method simplified the system design, reduced the complex pipeline, valve or pressure signal network, and provided a more portable, economical and efficient electric spray propulsion solution.

The 3D printed electric spray engine can almost mark an important breakthrough in space propulsion technology. Due to its ability to produce quickly and customize, it can quickly adjust designs according to specific needs in space missions, greatly improving execution flexibility and response speed. Especially in emergency repairs or the need for rapid deployment of new satellites, this immediate production capability is particularly important. Being able to directly manufacture engines in space means that future space missions will no longer rely solely on equipment sent from Earth, but will be able to self repair and upgrade in orbit. Therefore, this innovation not only significantly reduces production costs and time, but also brings more flexible and efficient solutions for future space exploration.

Source: laserfair

Related Recommendations
  • BLM Group launches a new LT12 laser tube cutting system

    Recently, BLM Group in the United States has launched a new LT12 laser tube system, which performs well in cutting light and heavy pipes and profiles, and can handle materials with a diameter of up to 305 millimeters.According to the company, compared to other similar machines, the LT12 laser tube system reduces cutting time by up to 55% when cutting materials with the same maximum diameter, signi...

    2024-04-18
    See translation
  • Scientists have developed a palm sized femtosecond laser using a glass substrate

    Researchers at the Federal College of Technology in Lausanne (EPFL) have shown that femtosecond lasers suitable for palm size can be manufactured using glass substrates.Can femtosecond lasers made entirely of glass become a reality? This interesting question prompted Yves Bellouard, the head of the Galata laboratory at the Federal Institute of Technology in Lausanne, to embark on a journey after y...

    2023-10-04
    See translation
  • Uncovering the Secrets of Nature: A New Generation of X-ray Lasers Reveals the Mystery of Atoms

    As a breakthrough leap in scientific exploration, the new generation of powerful X-ray lasers is now targeting the fastest and most basic processes in nature. Their mission: to uncover the complex atomic arrangement that drives these phenomena, providing unprecedented insights into chemical reactions, electronic behavior in materials, and the mysteries of the natural world.Unlocking the precise me...

    2023-09-25
    See translation
  • Mechanism of Time Power Modulation Increasing Weld Depth in High Power Laser Welding

    Researchers from the Hanover Laser Center and Leibniz University in Germany reported on the mechanism of increased welding depth during time power modulation in high-power laser beam welding. The related paper titled "Mechanisms of Increasing Welding Depth during Temporary Power Modulation in High Power Laser Beam Welding" was published in Advanced Engineering Materials.Understanding the basic mec...

    2024-12-18
    See translation
  • New types of lenses in optics: Researchers develop hybrid achromatic lenses with high focusing efficiency

    Researchers at the University of Illinois at Urbana Champaign have developed compact visible wavelength achromatic mirrors using 3D printing and porous silicon, which are crucial for miniaturization and lightweight optical devices. These high-performance hybrid micro optical devices can achieve high focusing efficiency while minimizing volume and thickness. In addition, these microlenses c...

    2023-12-11
    See translation