English

Changchun Institute of Optics and Fine Mechanics has developed a high brightness HiBBEE non-uniform waveguide semiconductor laser

48
2025-03-18 14:14:23
See translation

High brightness semiconductor lasers have extremely important applications in fields such as laser radar. Traditional semiconductor lasers face challenges such as large vertical divergence angle, elliptical beam output, multiple lateral modes, and poor beam quality, which limit the direct application of high brightness semiconductor lasers.

In response to this challenge, the team from the Bimberg Sino German Green Photonics Research Center at Changchun Institute of Optics and Fine Mechanics has adopted a high brightness vertical wide area edge emission (HiBBEE) structure in the vertical direction, using the photonic bandgap effect to replace the traditional total reflection principle for light field limitation, improving the size of the optical mode, and reducing the vertical divergence angle of semiconductor lasers; At the same time, in the lateral direction, non-uniform waveguides were used to suppress lateral higher-order modes, improve the lateral beam quality of semiconductor lasers, and optimize the design and preparation of HiBBEE non-uniform waveguide semiconductor lasers. At a current of 1.5A, the full width at half maximum of the vertical and lateral divergence angles is still as low as 8.6 ° and 5.1 °, while maintaining the fundamental mode output. The brightness is improved by 1.5 times compared to similar devices.

 


Schematic diagram of HiBBEE non-uniform waveguide semiconductor laser structure

 


HiBBEE non-uniform waveguide semiconductor laser brightness


This high brightness HiBBEE non-uniform waveguide semiconductor laser can significantly reduce the application cost of semiconductor lasers and has broad application prospects.

The first author of the article is Wu Chengkun, a doctoral student at the Sino German Center, and the corresponding author is researcher Tian Sicong. The research was supported by the Sino German International Cooperation Project of the National Natural Science Foundation of China (Research on 1250nm High Brightness Quantum Dot Laser for Lidar, No. 62061136010).

Source: opticsky

Related Recommendations
  • Toronto research has discovered 21 new sources of organic solid-state lasers

    Organic solid-state lasers (OSLs) are expected to achieve widespread applications due to their flexibility, tunability, and efficiency. However, they are difficult to manufacture and require over 150.000 possible experiments to find successful new materials, and discovering them will be a work of several lifetimes. In fact, according to data from the University of Toronto in Canada, only 10-20 new...

    2024-05-22
    See translation
  • Bodor Laser has been approved by Shandong Engineering Research Center

    Recently, the Development and Reform Commission of Shandong Province announced the list of Shandong Engineering Research Centers for 2024. bodor Laser has been recognized as the "Advanced Laser High end Intelligent Manufacturing and Application Shandong Engineering Research Center" and is the only enterprise in the laser intelligent manufacturing industry to be listed.As an important component of ...

    2024-07-17
    See translation
  • Researchers use spectroscopic methods to characterize ancient Egyptian mining gemstones

    In a recent study published in the journal AIP Advances, researchers used molecular and elemental spectroscopy techniques such as laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy to characterize mines in ancient Egypt.In this study, researchers examined various gemstones that can be traced back to the era of the pharaohs. The team...

    2023-08-31
    See translation
  • TriLite has partnered with AMS OSram to develop AR smart glasses displays

    TriLite has announced a technical collaboration with ams OSRAM, a global leader in smart sensors and transmitters. Ams Osram will supply its sub-assembled RGB laser diode to "light up" TriLite's Trixel® 3 laser beam scanner (LBS), the world's smallest AR smart glasses projection display.The award-winning Trixel® 3 LBS offers breakthrough compactness and light weight, as well as a bright an...

    2023-09-06
    See translation
  • Germany's leading optoelectronics industry (Jenoptik) in the first half of the gold over 4.2 billion

    On August 9, local time, Germany's leading optoelectronics company Jenoptik released its 2024 second quarter interim financial results forecast. The financial data show that the company in the challenging market environment still shows strong growth momentum.In the first half of the year, Jenoptik achieved significant growth in revenue and earnings before interest, taxes, depreciation and amortiza...

    2024-08-15
    See translation