Nederlands

Microstructure evolution and mechanical properties of Ti-6Al-4V alloy prepared by dual ultrasonic vibration assisted directional energy deposition

108
2025-03-21 14:11:35
Bekijk vertaling

1. Research background
Directed energy deposition (DED), as an efficient and economical technology in the field of additive manufacturing (AM), is widely used in the manufacturing of metal materials. However, its high heating and cooling rates, as well as significant temperature gradients, often lead to rapid solidification, forming cross layer columnar grains and internal defects, seriously affecting the mechanical properties of additive manufacturing components. Especially Ti-6Al-4V alloy, due to its low nucleation rate, is more prone to form coarse columnar grains during the DED process, which limits its application in aerospace and marine engineering fields.

To address this issue, researchers have proposed various methods, including modifying printing strategies, implementing post-processing techniques, adding nucleating agents, and introducing external energy fields. Ultrasonic vibration (UV) technology has been introduced into additive manufacturing processes in recent years due to its successful application in welding and casting fields. It promotes the formation of fine equiaxed crystals through ultrasonic cavitation and acoustic flow effects, thereby significantly improving the mechanical properties of materials. However, existing methods still have limitations, such as the inability to dynamically adjust the fixed position of a single ultrasound source and the difficulty in fully achieving the transition from columnar crystals to equiaxed crystals. Therefore, developing a simple, efficient, and environmentally friendly bidirectional ultrasound assisted additive manufacturing technology has become a current research focus.

Recently, Harbin Engineering University, together with the Key Laboratory of Extreme Manufacturing Technology for Aircraft Engines in Zhejiang Province and Siberian State University of Technology, published a paper in the journal Materials Science and Engineering in the field of materials science A research result titled "Microstructure evolution and mechanical properties of Ti-6Al-4V alloy fabricated by directed energy deposition assisted with dual ultrasonic vibration" was published on A. This article introduces a new method for manufacturing Ti-6Al-4V alloy thin-walled parts by simultaneously and synchronously applying top and bottom ultrasonic vibrations during directional energy deposition. Through this method, coarse columnar primary β grains were successfully transformed into equiaxed grains, and the microstructure and mechanical properties of the material were significantly improved.

2. Paper images


Figure 1 (a) Schematic diagram of dual ultrasound assisted DED process and (b) Configuration and orientation of stretched samples

 


Figure 2 Deposition microstructure of Ti-6Al-4V alloy, (a, e) sample O, (b, f) sample T, (c, g) sample B, (d, h) sample D

 


Figure 3 (a) Engineering stress-strain curve, (b) Average yield strength, tensile strength, and elongation, (c) Comparison of the properties of Ti-6Al-4V alloy (sample D) prepared by dual ultrasonic process in this study with those reported in the literature


Figure 4 shows the inverse pole and orientation diagrams of the alpha phase (a, b, c, d) and native beta phase (e, f, g, h) along the construction direction. Sample O (a, e), sample T (b, f), sample B (c, g), and sample D (d, h)


Figure 5 Recrystallization and KAM maps of Ti-6Al-4V alloy after different ultrasonic treatments, (a, e) sample O, (b, f) sample T, (c, g) sample B, (d, h) sample D


Figure 6 (a) IPF of alpha phase for sample O, (b) sample T, (c) sample B and (d) sample D, (e) aspect ratio of alpha phase for sample O, (f) sample T, (g) sample B and (h) dual ultrasound treatment, KAM plot for (i) sample O, (j) sample T, (k) sample B and (l) sample D, BSE images for (m) sample O, (n) sample T, (o) sample B and (p) sample D


Figure 7 TEM image of sample D, (a, b, c) typical microstructure, (d, e, f) "petal shaped" microstructure, (g, h) nanocrystals, (i) SADE image


Figure 8 Tensile fracture morphology, (a) Sample O, (b) Sample D, (c) Enlarged view of the yellow circle area in Figure (a), (d) Enlarged view of the red circle area in Figure (b)


Figure 9 SEM images of the microstructure of the polished cross-section, where (a, c) represents sample O and (b, d) represents sample D


Figure 10 (a) Schematic diagram of a two-dimensional model, illustrating the influence of ultrasound on the displacement field of the sediment layer and the sound pressure distribution inside the melt pool, (b) Sound pressure distribution inside the melt pool only during bottom ultrasound treatment, (c) Sound pressure distribution inside the melt pool during dual ultrasound treatment, (d) Changes in solidification conditions, temperature gradient (G), and solidification rate (R) of the melt pool under different ultrasound loading conditions

3. Key conclusions
(1) Introducing ultrasonic vibration (UV) into the directed energy deposition (DED) process can refine the primary β - grains of Ti-6Al-4V alloy in situ. This method promotes the formation of equiaxed grains, suppresses the epitaxial growth of columnar grains, and ultimately improves the mechanical properties of the material. The equiaxed crystal grains observed in the multi-layered samples after multiple reciprocating sedimentation indicate that dual ultrasonic vibration treatment is more effective than single ultrasonic vibration treatment.

(2) Introducing dual ultrasonic vibration during the DED process promotes the transformation of the growth mode of the alpha phase from parallel arrangement to radial arrangement. This change helps to reduce grain boundary continuity, enhance mechanical interlocking between grains, and thus improve the overall mechanical properties of the material.

(3) Compared with the condition without ultrasonic treatment, the tensile strength (UTS), yield strength (YS), and elongation at break of Ti-6Al-4V alloy manufactured by dual ultrasonic technology were significantly increased by 26.7%, 24.7%, and 104%, respectively. These results indicate that the introduction of ultrasonic vibration effectively reduces the formation of coarse columnar grains in Ti-6Al-4V alloy during additive manufacturing process.

(4) The introduction of ultrasonic vibration changed the solidification conditions in the melt pool and induced the transformation from columnar to equiaxed crystals during the solidification process of Ti-6Al-4V alloy. In addition, the generation of ultrasonic cavitation in the melt pool promotes the refinement of grains and the improvement of microstructure characteristics. In this study, the application of ultrasound conditions promoted the formation of completely equiaxed grains in the melt pool, which is consistent with the experimental results observed through microstructure analysis.

Source: Yangtze River Delta Laser Alliance

Gerelateerde aanbevelingen
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    2024-04-03
    Bekijk vertaling
  • ALPD laser projection technology enters the Middle East market

    With the continuous growth of user numbers and usage duration, the quality and reliability of the ALPD laser projection solution independently developed by the global laser display leader Guangfeng Technology (688007. SH) have been increasingly recognized by more and more users.It is reported that VOX Cinemas, a well-known cinema line in the Middle East, has also joined the ALPD laser projection s...

    2024-08-07
    Bekijk vertaling
  • Light Adv. Manuf. | Laser Direct Writing Assists Perovskite Optoelectronic Applications

    IntroductionMetal halide perovskites have excellent optoelectronic properties and have become the undisputed "star" materials in the semiconductor field, attracting great attention from both academia and industry. With a large amount of research investment, the application of perovskite covers various optical and optoelectronic fields such as single photon sources, micro nano lasers, photodetector...

    2024-03-25
    Bekijk vertaling
  • Researchers have manufactured chip based optical resonators that can operate in the ultraviolet (UV) and visible light regions of the spectrum

    Figure: Researchers have created a chip based ring resonator that operates in the ultraviolet and visible light ranges and exhibits record low UV loss. The resonator (small circle in the middle) is displayed as blue light.Researchers have created chip based photonic resonators that can operate in the ultraviolet (UV) and visible regions of the spectrum and exhibit record low UV loss. The ne...

    2023-10-06
    Bekijk vertaling
  • Researchers have developed a new type of frequency comb that is expected to further improve the accuracy of timing

    The chip based device, known as the frequency comb, measures the frequency of light waves with unparalleled accuracy, completely changing timing, detection of exoplanets, and high-speed optical communication.Now, scientists and collaborators from the National Institute of Standards and Technology in the United States have developed a new method for manufacturing combs, which is expected to improve...

    2024-03-15
    Bekijk vertaling