Nederlands

Light Adv. Manuf. | Laser Direct Writing Assists Perovskite Optoelectronic Applications

123
2024-03-25 13:55:14
Bekijk vertaling

Introduction
Metal halide perovskites have excellent optoelectronic properties and have become the undisputed "star" materials in the semiconductor field, attracting great attention from both academia and industry. With a large amount of research investment, the application of perovskite covers various optical and optoelectronic fields such as single photon sources, micro nano lasers, photodetectors, optical logic gates, optical communication, waveguides, nonlinear optics, etc. Therefore, building and integrating photonic devices with different functions based on a single perovskite chip is very promising.

The development of micro nano processing technology is a crucial step in integrating various optoelectronic devices onto a single chip to meet the requirements of advanced integrated optics, and will play a crucial role in the development of next-generation information technology.
Laser direct writing (DLW) is an efficient, non-contact, maskless micro/nano processing technology that couples the laser beam with a microscope to reduce the size of the output spot and achieve high-resolution micro/nano processing. According to the manufacturing mechanism and material threshold response, the optimal resolution of DLW is usually between a few to hundreds of nanometers. Meanwhile, DLW can flexibly manufacture any micro/nanostructure on the same substrate, and can also use spatial light modulators to change the focused laser field into a specific shape or generate multiple focal points simultaneously, thus meeting the needs of large-scale manufacturing.

Recently, Associate Professor Gan Zhixing from Nanjing Normal University, in collaboration with Professor Jia Baohua and Researcher Wen Xiaoming from Royal Melbourne Institute of Technology, published a review paper on "Direct laser writing on halide perovskites: from mechanisms to applications" in Light: Advanced Manufacturing. The paper reviewed the latest progress of DLW in the field of perovskite semiconductors, revealed the interaction mechanism between light and perovskite during laser direct writing, and introduced the application of DLW processed micro nano structured perovskite in optoelectronic devices. Finally, the future prospects and challenges of this technology were summarized.

Figure 1: Mechanism and application of interaction between laser and perovskite

The interaction mechanism between laser and perovskite
Laser has unique advantages such as high precision, non-contact, easy operation, and no mask, making it an excellent tool for operating, manufacturing, and processing micro and nanostructures on semiconductors. The specific interaction mechanism between laser and perovskite can be divided into various phenomena such as laser ablation, laser induced crystallization, laser induced ion migration, laser induced phase separation, laser induced photoreaction, and other laser induced transformations. These different mechanisms of action represent different changes in perovskite crystals. For example, laser induced crystallization is the nucleation and crystallization process of perovskite precursors, while laser induced phase separation is the process of separating mixed perovskite phases into two different phases, both of which contain rich physical phenomena. The implementation of the entire micro nano machining process is influenced by DLW parameters, such as wavelength, pulse/continuous wave, action time, power, and repetition frequency. The selection of these parameters provides a flexible and powerful tool for precise control of the microstructure of perovskite.

Optoelectronic applications of micro nano structured perovskites manufactured by DLW
The perovskite material processed by DLW has a wide range of applications in fields such as solar cells, light-emitting diodes, photodetectors, lasers, and planar lenses, exhibiting superior performance. At the same time, due to the unique ionic properties of perovskites, they exhibit phenomena such as ion migration, phase separation, and photochromism under continuous laser action, thereby expanding their applications in multi-color displays, optical information encryption, and storage.

Challenges and Prospects
Compared with traditional semiconductor manufacturing techniques, DLW technology greatly improves manufacturing efficiency due to its simple operation process and high-throughput characteristics, and is expected to produce high-resolution complex micro/nanostructures on a large scale. The combination of cheaper and more flexible controllable lasers with the superior optoelectronic performance of perovskite semiconductors will bring enormous potential for the preparation of micro nano structured perovskite optoelectronic devices. At present, relevant research is still in its early stages and some key technical bottlenecks need to be addressed. It is expected that in the near future, when these bottlenecks are overcome, significant progress will be made in related basic research and industry.

Source: Sohu

Gerelateerde aanbevelingen
  • 150 kW Ultra High Power Laser Sensor Released

    Recently, MKS announced the launch of a brand new Ophir ® A 150 kW ultra-high power laser sensor designed specifically for measuring ultra-high power levels up to 150 kW. This sensor has excellent accuracy and reliability, suitable for industrial and defense fields.This water-cooled calorimeter has a working wavelength range of 900-1100 nm and can measure power from 10 kW to 150 kW. Its extremely ...

    2024-12-27
    Bekijk vertaling
  • Diffractive optical elements: the behind the scenes hero of structured light laser technology

    In today's rapidly developing technological era, structured light laser technology has become an important tool in the fields of 3D measurement and image capture. The core of this technology lies in a magical device called Diffractive Optical Elements (DOE), which can precisely control and shape laser beams, creating various complex light patterns. But what exactly is DOE? How does it work? Let Ho...

    2024-04-10
    Bekijk vertaling
  • Dehaha launches laser cutting integrated machine screw compressor

    The revolution in the laser cutting industry is in full swing. Like the laser cutting machine industry, China's air compressor industry has developed rapidly in the past 20 years and has undergone iterative progress in response to the huge demands of various industries. It has gradually achieved a process from imitation to independent innovation.Recently, DHH Compressor has launched its latest inn...

    2024-05-27
    Bekijk vertaling
  • The Asia Photonics Expo will be held in Singapore from February 26th to 28th, 2025

    The Asia Photonics Expo (APE), as an internationally leading comprehensive brand promotion and business negotiation platform for optoelectronics, will be grandly held from February 26 to 28, 2025 at the L1 exhibition hall of the Sands Expo&Convention Centre in Singapore. As the top event in the field of optoelectronics, APE Asia Optoelectronics Expo will focus on cutting-edge innovative techno...

    01-03
    Bekijk vertaling
  • Rachel's latest laser welding and cutting machine processes thicker materials at lightning speed

    Rachel is a pioneer in laser technology solutions and is pleased to announce a significant update to its laser welding and cutting machines. These enhanced features aim to provide customers with faster turnaround time and higher accuracy, reaffirming Rachel Corporation's commitment to providing cutting-edge laser cutting and welding solutions to meet the needs of different industries.Lache Company...

    2024-04-07
    Bekijk vertaling