Polski

Researchers at the Massachusetts Institute of Technology have designed a new type of quantum light source using lead salt perovskite nanoparticles

117
2023-10-09 15:20:21
Zobacz tłumaczenie

Most traditional quantum computing uses the spin of supercooled atoms or individual electrons as quantum bits, which form the foundation of such devices. By comparison, if light is used to replace physical entities as basic quantum bits, ordinary lenses and optical detectors can replace expensive devices to control the data input and output of quantum bits.

Based on this, chemistry professors Moungi Bawendi and graduate student Alexander Kaplan from the Massachusetts Institute of Technology designed a new type of quantum light source using a common solar photovoltaic material (lead salt perovskite nanoparticles) and demonstrated that the material has a fast low-temperature radiation rate and can emit single photon streams with the same characteristics. Although this work is currently only a basic study of the functions of these materials, it is expected to pave the way for new optical quantum computers and quantum teleportation devices for communication. This achievement was published in Nature Photonics under the title "Hong Ou Mandel interference in colonial CsPbBr3 perovskite nanocrystals" (DOI: 10.1038/s41566-023-01225-w).

Microscopic imaging of perovskite nanoparticles
Kaplan said that by combining photons similar to qubits with some common linear optical devices, people can build a new quantum computer. The key to the entire research lies in not only generating these photons, but also ensuring that each photon accurately matches the quantum properties of previous photons. Generally speaking, the truly significant paradigm shift in scientific research is the shift from requiring very special and expensive optical devices to requiring only simple and common equipment.

Bawendi explained that they utilize these identical and indistinguishable single photons and interact with each other. This inseparability is very important. If two photons are identical, you cannot distinguish which is the first and which is the second. There is no way to track them, which is why they are allowed to interact. Kaplan said that if people want photons to have this very special property, which is well defined in terms of energy, polarization, spatial mode, temporal mode, and everything that can be encoded using quantum mechanics, they also need a single photon light source with very good quantum performance.

In the experiment, the research team used lead salt perovskite nanoparticles as luminescent materials. Lead halide perovskite thin films are lighter and easier to process than the widely used silicon based photovoltaic materials today, and have received widespread attention as potential next-generation photovoltaic materials. Unlike other colloidal semiconductors, lead halide perovskite in the form of nanoparticles has extremely fast low-temperature emissivity. The faster light is emitted, the more likely the output is to have a clear wave function. Therefore, the rapid radiation rate enables lead halide perovskite nanoparticles to uniquely emit quantum light.

To test that the designed single photon source indeed has this indistinguishable characteristic, the standard test is to detect a specific type of interference between two photons called red Euclidean interference. Kaplan stated that this phenomenon is at the core of many quantum based technologies, so proving its existence has become the standard for confirming that photon sources can be used for these purposes. But the materials that meet this testing requirement are very few, almost just a handful. Although the new light source designed by the research team is not yet perfect and only generates HOM interference in about half of the cases, it has significant improvements in scalability compared to other light sources and can be integrated into other devices. Because other light sources use very pure materials and are composed of one atom after another, their scalability and repeatability are relatively poor.

In contrast, perovskite nanoparticles are made in solution and then simply deposited on the substrate material. What we do is simply spin coat it onto the surface of ordinary glass, "Kaplan said. But in this way, they also observed a phenomenon that could only be seen under very strict production processes before.

The research team stated that the importance of this work lies in the hope that it can encourage people to study how to further enhance functionality in various device architectures. They are fully confident that integrating this new light source into an optical cavity will bring its performance to a competitive level.

Source: China Optical Journal Network

Powiązane rekomendacje
  • Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

    Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/wa...

    2024-02-21
    Zobacz tłumaczenie
  • Laser blasting promises to solve global plastic problem

    Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.This discovery has the potential to improve the way we handle plastics that...

    2024-07-16
    Zobacz tłumaczenie
  • Application and Effect of Laser Cleaning

    Mold cleaning: Mold plays a very important role in industrial production. Currently, there are over a thousand mold related enterprises in China, driving the related output value to nearly 10 billion yuan. Among them, mold cleaning is an essential step in mold production. Laser can achieve contactless cleaning of molds, which is very safe for the surface of the mold, ensuring its accuracy, and can...

    2023-10-14
    Zobacz tłumaczenie
  • Professor Wu Dong's team at the University of Science and Technology of China created a "dancing microrobot" using femtosecond laser composite materials.

    It was learned from the University of Science and Technology of China that the team of Professor Wu Dong of the Micro and Nano Engineering Laboratory of the school proposed a femtosecond laser two-in-one multi-material processing strategy, manufactured a micromechanical joint composed of temperature-sensitive hydrogel and metal nanoparticles, and then developed a multi-joint humanoid micromachine ...

    2023-08-11
    Zobacz tłumaczenie
  • NUBURU announces its latest strategic blueprint

    Following the announcement of the immediate termination of a $2 million stock exchange agreement and its partnership with HUMBL, high-power blue laser light source manufacturer NUBURU has once again announced its latest strategic blueprint. Through specific understanding, after this strategic update, NUBURU's business model will cover two collaborative key business lines, with a focus on defense a...

    2 dni temu
    Zobacz tłumaczenie