Português

Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

169
2024-01-09 14:20:23
Ver tradução

Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.

This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals into a single laser oscillator. To maintain stability, the resulting hybrid laser produces a consistent output of over 20 mW at 1063.4 nm, reaching a peak of 37 mW. The uniqueness of this laser lies in its combination of the compactness, durability, and cost-effectiveness of fiber lasers, as well as the multifunctional characteristics of crystal based solid-state lasers, including various powers and colors. This research represents significant progress in creating affordable, compact and reliable lasers, especially for the lidar system in autonomous vehicle.

"By using 3D printing to manufacture high-quality micro optical devices directly on glass fibers used inside the laser, we have significantly reduced the size of the laser," said Simon Angstenberger, head of the research team at the Fourth Institute of Physics at the University of Stuttgart. This is the first implementation of this 3D printed optical device in real-world lasers, highlighting their high damage threshold and stability.

The Fourth Institute of Physics at the University of Stuttgart has been actively involved in promoting the development of 3D printing micro optical technology, especially in direct printing onto optical fibers. Using the two-photon aggregation 3D printing method, researchers have achieved the creation of high-precision miniaturized optical devices and introduced new features such as free-form surface optical devices and complex lens systems.

In this study, a Nanoscribe 3D printer was used to manufacture a lens with a diameter of 0.25 millimeters and a height of 80 micrometers directly on a size matched fiber through two-photon polymerization. This process involves designing optical components using commercial software, inserting optical fibers into a 3D printer, and performing complex structure printing at the end of the fiber. The accuracy of aligning printing with fibers and ensuring the accuracy of the printing process are key aspects of this meticulous process.

After printing, the researchers assembled the laser and its cavity, choosing fibers instead of traditional mirrors. This method produces a hybrid fiber crystal laser, where the printed lens focuses and collects light entering and exiting the laser crystal. Then fix the fiber optic cable on the bracket to enhance system stability and reduce sensitivity to air turbulence, thus forming a compact 5 x 5 cm2 laser system.

Within a few hours, continuous monitoring of laser power was conducted to confirm that the printed optical components did not deteriorate or have any adverse effects on the long-term performance of the laser. The scanning electron microscope images of the optical components used in the laser cavity show no visible damage. Researchers are currently focused on optimizing the efficiency of printed optical devices, exploring larger fibers and different lens designs to improve output power and customized options for specific applications.

"So far, 3D printed optical devices have been mainly used for low-power applications such as endoscopy," Angstenberger said. For example, the ability to use them for high-power applications may be useful for lithography and laser marking. We demonstrate that these 3D micro optical devices printed on fibers can be used to focus a large amount of light onto a single point, which is very useful for medical applications.

During an interview with the 3D printing industry, Philipp Kohlwes, head of L-PBF at Fraunhofer IAPT, shared the institute's research on beam shaping to improve the stability and productivity of metal 3D printing. The focus of this study is to adjust the laser profile to optimize the energy input of the molten pool in the laser powder bed melting, and to solve the problems caused by traditional Gaussian profiles. Beam shaping is crucial for laser contour adjustment, ensuring a uniform temperature distribution. This technology has advantages such as enhanced microstructure control, potential cost savings, and up to 2.5 times printing speed, which can help improve productivity.

Last January, 3DM Digital Manufacturing launched a technology that allows users to customize their selective laser sintering 3D printing lasers for specific materials or applications. Using quantum cascade lasers, the company's proprietary lasers can provide adjustable wavelengths, faster laser absorption, and high surface finish. With its application in polymer manufacturing, this scalable technology aims to expand the market share of industrial 3D printing.

Source: Laser Net

Recomendações relacionadas
  • Each unit of metamaterials used for simulating optical calculations is smaller than the wavelength of the light they are designed to manipulate

    The new architecture based on metamaterials provides a promising platform for constructing large-scale production and reprogrammable solutions that can perform computational tasks using light.The idea of simulating computers - a device that uses continuous variables instead of zero sum ones - may evoke outdated machinery, from mechanical watches to bomb sight devices used in World War II. But emer...

    2024-03-30
    Ver tradução
  • TAU Systems upgrades the University of Texas desktop laser to a peak power of 40 terawatts

    TAU Systems, a manufacturer of ultra fast compact laser plasma accelerators, announced today that it has successfully upgraded the existing desktop terawatt laser (UT 3) at the University of Texas to a new and improved performance that provides power for compact particle accelerators. The upgraded UT 3 driver laser can now generate ultra short pulses with a peak power of 40 terawatts.This upgrade ...

    2023-08-21
    Ver tradução
  • RTX Raytheon Company will develop ultra wide bandgap semiconductors for ultraviolet lasers

    The UWBGS program will develop and optimize ultra wide bandgap materials and manufacturing processes for the next revolution in the semiconductor electronics field.US military researchers need to develop new integrated circuit substrates, device layers, junctions, and low resistance electrical contacts for the new generation of ultra wide bandgap semiconductors. They found a solution from RTX comp...

    2024-09-30
    Ver tradução
  • Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

    Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.John Hall's research focuses on understanding and manipulating s...

    2024-03-18
    Ver tradução
  • A new type of all-optical intelligent spectrometer

    Recently, Professor Xu Tingfa's research team from the School of Optoelectronics at Beijing Institute of Technology and Assistant Professor Lin Xing's team from Tsinghua University jointly developed a new type of Opto Intelligence Spectrometer (OIS). The device is based on diffractive neural network technology and achieves precise spectral reconstruction under spatially coherent or spatially incoh...

    2024-07-22
    Ver tradução