Русский

The semiconductor Institute has made progress in the study of high power and low noise quantum dot DFB single-mode lasers

123
2023-09-05 15:38:36
Посмотреть перевод

Recently, the team of Yang Tao-Yang Xiaoguang, a researcher at the Key Laboratory of Materials Science of the Institute of Semiconductors of the Chinese Academy of Sciences, and Lu Dan, a researcher, together with Ji Chen, a professor at the Zhijiang Laboratory of Zhejiang University, have made important progress in the research of high-power, low-noise quantum dot DFB single-mode lasers.

Distributed feedback (DFB) lasers are compact and dynamic single-mode, and are the core light sources for applications such as high-speed optical communication, large-scale photon integration, liDAR and microwave photonics. 

In particular, the field of artificial intelligence represented by ChatGPT shows an explosion trend, which urgently needs optical computing chips with high computing power, high integration and low power consumption as physical support, and puts forward higher requirements for the temperature stability, high temperature operating characteristics, optical feedback stability, single mode quality, and volume cost of the core light source.

By using a high density, low defect laminated InAs/GaAs quantum dot structure as the active region and a low loss lateral coupling grating as an efficient mode selection structure, the team developed a high-performance O-band quantum dot DFB laser with high power, high stability, low noise and anti-feedback in a wide temperature region. In the range of 25-85 °C, the output power of the laser is greater than 100 mW, and the maximum edge mode rejection ratio is more than 62 dB. The lowest white noise level is only 515 Hz2 Hz-1, and the corresponding intrinsic line width is as low as 1.62 kHz. The minimum average RIN is only -166 dB/Hz (0.1-20 GHz). 

In addition, the anti-optical feedback threshold of the laser is as high as -8 dB, which meets the technical standards for stable operation without external optical isolators. The device has excellent comprehensive performance, low cost and small size, and has a large-scale application prospect in the fields of large-capacity optical communication, high-speed on-chip optical interconnection, high-precision detection, etc.

The relevant research results are as follows: High-Power, Narrow-Linewidth, and Low-Noise Quantum Dot Distributed Feedback Lasers. Published in Laser & Photonics Reviews. The research work is supported by the National key research and development Plan and the National Natural Science Foundation.

Figure 1. Morphology and fluorescence characteristics of quantum dot materials, as well as device and grating structures

Figure 2. Output characteristics, spectral characteristics, optical frequency noise characteristics and spectral stability under external optical feedback of the device

Paper link: https://doi.org/10.1002/lpor.202200979

Source: Semiconductor Research Institute

Связанные рекомендации
  • Dr. Torsten Derr will be appointed as the CEO of SCHOTT Group on January 1, 2025

    November 25, 2024, Mainz, GermanyStarting from January 1, 2025, Dr. Torsten Derr will take over as the CEO of SCHOTT Group.The new CEO of SCHOTT Group previously served as the CEO of SGL Carbon SE.Starting from January 1, 2025, Dr. Torsten Derr will officially assume the position of CEO of SCHOTT Group. SCHOTT Group announced in October 2024 that Dr. Torsten Derr will succeed Dr. Frank Heinrich, w...

    2024-11-27
    Посмотреть перевод
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of attosecond high spatiotemporal resolution imaging

    The attosecond light source has the characteristics of ultra short pulse width, short wavelength, high coherence, and high-precision synchronous control, and has extremely high potential for application in the field of ultrafast imaging. Especially when the attosecond light source reaches the "water window" band, oxygen and hydrogen atoms have weak absorption of X-rays in this band, so water is re...

    2024-10-14
    Посмотреть перевод
  • Huagong Technology: Exploring the "Laser+" Strategy to Deliver the Powerful Productivity of Laser and Intelligent Manufacturing to Various Parts of the World

    What is the power of a beam of light? If light is used in the manufacturing field, its highest accuracy can reach one percent of the diameter of a hair thread, which is why it is called the "brightest light", "most accurate ruler", and "fastest knife". From airplanes and ships to kitchens and electrical appliances, lasers are widely used as advanced processing tools in all aspects of equipment man...

    2023-10-12
    Посмотреть перевод
  • The Trends and Challenges of the Metal 3D Printing Industry in 2025

    In the past decade, metal 3D printing technology has experienced rapid development, from the initial production of orthopedic implants to the manufacturing of rocket boosters. This technology has become an indispensable part of multiple key industries. With the advancement of technology and the expansion of the market, we are witnessing the revival of electron beam melting (EBM) technology and the...

    01-21
    Посмотреть перевод
  • Shanghai Optical Machinery Institute has made progress for the first time in hard X-ray zoom beam imaging

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, completed the research of hard X-ray zoom beam splitting imaging on the micro focus X-ray source for the first time, and solved the problem of beam splitter limitation in the hard X-ray band. The related achievements are titled "Bifocal photo scene imaging in the...

    2024-04-08
    Посмотреть перевод