Türkçe

Scientists have developed a solar cell that can bend and soak in water

90
2024-05-08 15:48:46
Çeviriyi gör

Researchers and their partners at the RIEKN Creative Physical Science Research Center have created a flexible and waterproof organic photovoltaic film. This innovative thin film can integrate solar cells into clothing, maintaining functionality even in rainwater or washing cycles.

One of the potential uses of organic photovoltaic technology is to manufacture wearable electronic devices that can be attached to clothing, such as monitoring medical devices without the need for battery replacement. However, researchers have found that achieving waterproofing without the use of additional layers is very difficult, as the additional layer reduces the flexibility of the film.

Breakthroughs in Photovoltaic Technology
Now, a group of scientists publishing research results in Nature Communications can precisely achieve this. The challenge they face is overcoming a key limitation of previous equipment, which is that it is difficult to make it waterproof without reducing flexibility. Photovoltaic films typically consist of several layers. One layer is the active layer, which captures energy of a certain wavelength from sunlight and uses this energy to separate electrons and "electron holes" into cathodes and anodes. Then, electrons and holes can be reconnected through circuits to generate electrical energy. In previous devices, the layers for transmitting electron holes were usually generated sequentially through a layered approach.

But in the current work, researchers deposit the anode layer (in this case, the silver electrode) directly onto the active layer, thereby forming better adhesion between layers. They used a hot annealing process to expose the film to air at 85 degrees Celsius for 24 hours. The first author of the paper, Xiong Sixing, said, "Forming a thin film layer is very challenging, but we are pleased to have completed this task and ultimately be able to produce a thin film with a thickness of only 3 microns. We look forward to seeing the test results."

The results seen by the group from the test are very encouraging. Firstly, they completely immersed the film in water for four hours and found that its performance still had 89% of its initial performance. Then, they stretched the film 30% underwater 300 times and found that even with such punishment, the film still maintained 96% performance. In the final test, they placed the film in the washing machine for cyclic washing, and the film withstood the test, which was unprecedented before.

One of the corresponding authors of the paper, Kenjiro Fukuda, said, "What we have created is a method that can be widely used. Looking ahead, by improving the stability of the device in other aspects, such as exposure to air, strong light, and mechanical stress, we plan to further develop our ultra-thin organic solar cells to enable them to be used in truly practical wearable devices."

Source: sciechdaily

İlgili öneriler
  • New type of femtosecond laser: used for broadband terahertz generation and nonlinear wafer detection

    Recently, HüBNER Photonics, the leading manufacturer of high-performance lasers, has launched the latest member of the VALO femtosecond series - VALO Tidal. This laser not only represents a major leap in the fields of imaging, detection, and analysis, but also demonstrates the infinite possibilities of laser technology with its outstanding performance.The VALO Tidal femtosecond laser typically sho...

    2024-06-26
    Çeviriyi gör
  • Shanghai Optical Machine has made progress in frequency shift of even harmonic of single layer MoS2

    Recently, the research team of the State Key Laboratory of High-Field Laser Physics at the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made progress in using high-field lasers to drive the even harmonic frequency shift of single-layer MoS2. The results were published in Optics Express under the title "Frequency shift of even-order high harmonic generation...

    2023-09-07
    Çeviriyi gör
  • Juguang Technology launches miniaturized high-power semiconductor laser stack GS09 and GA03

    In today's technology field, Juguang Technology released two highly anticipated high-power semiconductor lasers on December 13th: GS09 and GA03. These two products are leading the innovation wave in the laser industry with their miniaturized design, excellent thermal management capabilities, and extensive customization flexibility.GS09 revolutionizes chip spacing by compressing the width of the st...

    2023-12-15
    Çeviriyi gör
  • Progress in the study of ultrafast electron dynamics using short light pulses

    When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and p...

    2024-01-08
    Çeviriyi gör
  • Scientists develop flat-topped laser beams to overcome Gaussian distribution limitations

    The beam emitted by almost all laser systems follows the Angle pattern of Gaussian distribution. The Gaussian irradiance distribution means that irradiance has a smooth peak at the center point and slowly declines toward the edge. In theory, the irradiance level of a Gaussian distribution can never reach zero, which means that the distribution can expand indefinitely. This phenomenon in the laser ...

    2023-08-04
    Çeviriyi gör