Tiếng Việt

Preparation of all silicon dielectric metasurface by femtosecond laser modification combined with wet etching, achieving ideal compatibility with complementary metal oxide semiconductor technology

143
2023-10-23 14:53:50
Xem bản dịch

The fully dielectric element surface has the characteristics of low material loss and strong field localization, making it very suitable for manipulating electromagnetic waves at the nanoscale. Especially the surface of all silicon dielectric elements can achieve ideal compatibility with complementary metal oxide semiconductor technology, making it an ideal choice for large-scale monolithic integration of photonic chips. However, in traditional silicon micro processing, the combination of mask lithography and active ion etching involves multiple preprocessing stages, resulting in increased costs and processing time.

This article proposes a femtosecond laser direct writing method, which uses femtosecond laser to process silicon below the ablation threshold and wet chemical etching to achieve the surface of all silicon dielectric resonant elements. This method utilizes different etching rates between laser modified and untreated regions to achieve the manufacturing of large-scale patterned silicon surfaces in a simple and economical manufacturing method.

The Ioanna Sakellari team from Greece utilized ultrafast laser modification and wet chemical etching to form a two-dimensional micro nano circular array structure on silicon surface. By adjusting the size of micro nano stage units on the silicon surface and changing the surface diameter of the stage, the resonance frequency of the metasurface can be effectively controlled. The Fourier transform infrared spectra of linearly polarized incident light with different silicon based nano cone array structures were experimentally measured, and the scale of 200 was characterized μ M × two hundred μ The infrared light transmittance of different nano cone array structures of m, with a cone height of approximately 0.95 μ m. The period of the array in both the x and y directions is 2.42 μ m. The surface diameters on the circular platform are 220nm (green), 380nm (blue), and 740nm (red), respectively. The electron microscope images of different nano cone array structures prepared are shown in the following figure:

Figure 1. Structure of a two-dimensional micro nano cone array on silicon surface

Source: Sohu

Đề xuất liên quan
  • Historic Moment! The 100th TruLaser Cell Series 3D Five-Axis Laser Cutting Machine Successfully Rolls Off the Production Line in China

    Driven by the global trend of lightweighting in new energy vehicles (NEVs), TRUMPF has reached a significant milestone in Taicang, Jiangsu—the successful rollout of the 100th TruLaser Cell series 3D five-axis laser cutting machine. This achievement is more than just a numerical breakthrough; it symbolizes the deep integration of German technology with Chinese manufacturing and underscores TRUMPF's...

    03-14
    Xem bản dịch
  • Photonic hydrogel of high solid cellulose with reconfigurability

    Recently, Qing Guangyan, a researcher team from the Research Group on Bioseparation and Interface Molecular Mechanism (1824 Group) of Biotechnology Research Department of Dalian Institute of Chemical Physics, Chinese Academy of Sciences, designed and prepared a highly solid cellulose photonic hydrogel with reconfigurability and mechanical discoloration. This preparation method opens up a new way t...

    02-17
    Xem bản dịch
  • Nature Photonics reports a new type of nonlinear optical crystal - all band phase matched crystal

    Short wave ultraviolet all solid-state coherent light sources have the characteristics of strong photon energy, practicality and precision, and high spectral resolution. They have significant application value in laser precision processing, information communication, cutting-edge science, and aerospace fields.The core component of obtaining all solid-state shortwave ultraviolet lasers is nonlinear...

    2023-10-07
    Xem bản dịch
  • The Trends and Challenges of the Metal 3D Printing Industry in 2025

    In the past decade, metal 3D printing technology has experienced rapid development, from the initial production of orthopedic implants to the manufacturing of rocket boosters. This technology has become an indispensable part of multiple key industries. With the advancement of technology and the expansion of the market, we are witnessing the revival of electron beam melting (EBM) technology and the...

    01-21
    Xem bản dịch
  • Shanghai Optics and Fine Mechanics Institute has made progress in the new holographic imaging technology of frequency domain direct sampling

    Recently, a research team from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new holographic imaging technology using frequency domain direct sampling. The relevant results were published in Optics Letters under the title of "Fourier inspired single pixel holography".Digital holography is a tech...

    03-20
    Xem bản dịch