Tiếng Việt

What are the "unique secrets" of each family in terms of breaking the game and high reaction materials?

195
2023-11-06 14:44:36
Xem bản dịch

Laser is considered a sharp sword that cuts iron like mud, but even sharper swords can have tricky moments. For example, in certain scenarios, there are materials with higher reflectivity, such as silver, copper, etc., known as "high reflection materials". High reflective materials have a low absorption rate for lasers, making them difficult to process and potentially causing equipment failure or even damage. For many years, it has been an important threshold for the laser cutting industry to try to overcome.

In addition to low absorption, when the high reflection material is not penetrated, it may cause higher power return light to return to the interior of the laser, damaging the laser. Therefore, traditionally speaking, laser cutting machines are both cautious and cautious in processing high reflective materials.

However, high reflective materials are a large group with extremely wide market applications. Whoever can conquer high reflective materials first can gain a foothold in the cruel market. Driven by market demand, some laser companies have gradually explored ways to break through high resistance barriers in recent years to meet diversified processing needs. Here are some ways for companies to break the situation:

01 Blue laser
The laser emitted by CO2 laser is in the infrared band (usually 10.6um), which performs well in many industrial applications. However, it is not ideal for high anti metal processing in special bands. So one possible approach is to bypass this high reflectivity band and replace it with a shorter wavelength blue laser (usually in the range of 400-500nm). Using blue light laser processing can not only improve the absorption rate, but also improve the splashing problem caused by infrared laser processing.

As a rising star in the blue laser industry, compared to mature infrared and green lasers, it is at most considered a little brother. In September 2020, the Guangdong Guangdong Guangdong Hong Kong Macao Greater Bay Area Hard Technology Innovation Research Institute (referred to as the "Hard Science Institute") launched the 500W series semiconductor blue laser, and later launched the 1000W series. This series of products is mainly used for welding, cladding, 3D printing, etc. of high reflective materials, which not only fills the domestic gap in this field, but also holds a leading position in technology worldwide.

Lithium ion battery welding, electronic component processing, and other scenarios require the processing of copper, a common high reaction material. After testing by the Institute of Hard Science, the power required to use a conventional infrared laser is about 4000 watts, while a blue laser only needs 400-800 watts to achieve processing. At the same time, due to the high absorption rate of blue light by copper, the process window is greatly increased, and the welding effect can be finely adjusted through parameter control to achieve "splash free welding". In addition, blue light welding of copper metal also has significant advantages in speed, at least 8 times faster than infrared laser welding.

02 Optimize fiber optic output head
In fiber laser machines, there are also thorny high reflection issues. In order to solve this problem, Ruike Laser chose to start with the laser head.

In principle, the return laser caused by high reflectivity materials is first and foremost affected by the output fiber optic cable head. Returning lasers can easily cause heat or even damage to the output optical cable. In order to ensure the safety of the output optical cable, Ruike Laser adopts a new QBH fiber output head and adds a primary return light stripping device on top of the original one. This highly reflective design can strip most of the return laser in the first time, combined with a water-cooled heat dissipation design to reduce the thermal impact on the output head of the optical cable.

In order to verify the performance of the new fiber output head, a high reflection test was conducted on the RFL-A1500D laser equipped with this output head. The overall testing approach was to simulate the user's usage environment, even exceeding the actual working conditions. After a rigorous welding test at the focal point, 90 ° perpendicular to the surface of red copper, although the surface of red copper has always been in a mirror state and a continuous stream of laser returns to the fiber output head, the core device has remained at normal operating temperature and is not significantly affected by the return light.

In addition, there are also ideas such as using swing welding heads and composite welding heads to avoid high reaction problems. With the popularization and application of lasers, they have emerged in various industrial manufacturing fields such as material processing, communication, information processing, medical beauty, scientific research and military. However, homogenized competition is becoming increasingly fierce, and exploring new ideas and opening up the new blue ocean will become the future development trend. As high reflective materials are "conquered" by lasers, this will bring new growth points to the laser processing industry.

Source: OFweek

Đề xuất liên quan
  • Tongkuai and KDPOF launch their first 980 nm multi gigabit automotive interconnection system

    Tongkuai Optoelectronic Devices, a global leader in vertical cavity laser emitters (VCSEL) and laser diodes (PD) solutions based in Germany, and a Spanish expert in high-speed optical network solutions, KDPOF, showcased the first 980 nm multi gigabit interconnect system for automotive systems at last week's ECOC.Both companies are committed to achieving the most advanced optical data communication...

    2023-10-17
    Xem bản dịch
  • Researchers treated MXene electrodes with lasers to improve lithium-ion battery performance

    Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have found that laser scribing or creating nanodots on battery electrodes can improve their storage capacity and stability. The method can be applied to an alternative electrode material called MXene.Lithium-ion batteries have multiple drawbacks in a wide range of applications, and researchers around ...

    2023-08-04
    Xem bản dịch
  • Siemens will provide Rolls Royce with aerospace additive manufacturing components

    Recently, Siemens Energy's Materials Solutions division (hereinafter referred to as Siemens) officially signed a cooperation agreement with Rolls Royce, a well-known enterprise in the field of aviation engines in the UK, agreeing that Siemens will develop and supply mass-produced additive manufacturing components for Rolls Royce's civil aerospace business.Rolls Royce and 3D Printing TechnologyRoll...

    2024-12-13
    Xem bản dịch
  • Overview of Ultra Short Pulse Laser Processing of Wide Bandgap Semiconductor Materials

    Professor Zhang Peilei's team from Shanghai University of Engineering and Technology, in collaboration with the research team from Warwick University and Autuch (Shanghai) Laser Technology Co., Ltd., published a review paper titled "A review of ultra shot pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN" in the international journal Materials Science in Semiconductor...

    2024-07-30
    Xem bản dịch
  • 253 million US dollars! This Canadian medical fiber optic sensor manufacturer will be acquired

    Recently, Haemantics Corporation, which focuses on providing innovative medical solutions with proprietary optical technology, announced that the company has reached a final agreement. According to the agreement, Haemonics will acquire all outstanding shares of Canadian fiber optic sensor manufacturer OpSens for CAD 2.90 per share.This is an all cash transaction with a fully diluted equity value o...

    2023-10-18
    Xem bản dịch