Tiếng Việt

Scientists demonstrate powerful UV-visible infrared full-spectrum laser

247
2023-08-25 14:29:07
Xem bản dịch
Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.
b. The bright white light circular spots emitted by the CPPLN sample.
c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.
d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM effects.
Source: Lihong Hong, Liqiang Liu, Yuanyuan Liu, Junyu Qian, Renyu Feng, Wenkai Li, Yanyan Li, Yujie Peng, Yuxin Leng, Ruxin Li, and Zhi-Yuan Li

High brightness ultra-wideband ultra-continuous white light laser has attracted more and more attention in physics, chemistry, biology, material science and other scientific and technological fields. Over the past few decades, many different methods have been developed to produce supercontinuous white lasers.

Most of them utilize a variety of third-order nonlinear effects, such as self-phase modulation (SPM) occurring in microstructured photonic crystal fibers or homogeneous plates, or noble gas-filled hollow fibers. However, the quality of these supercontinuum light sources is subject to some limitations, such as the small pulse energy at the nanojoule level, and the requirements of complex dispersion engineering.

Another more efficient means of expanding the laser spectral range is through the various second-order nonlinear effects (2nd-NL) of the quasi-phase matching (QPM) scheme. However, the spectrum and power scaling performance of these pure 2N-NL schemes are still poor due to the narrow pump band width, limited QPM operating bandwidth, and reduced efficiency of high order harmonic energy conversion.

How to solve these bad limitations in the 2nd-NL and 3rd-NL systems and make both to produce full-spectrum supercontinuum lasers with spectral coverage from ultraviolet to mid-infrared has become a great challenge.

In a new paper published in Light: Science & Applications: A team led by Professor Zhi-Yuan Li and colleagues from the School of Physics and Optoelectronics at South China University of Technology in China has demonstrated an intense, quadruple-frequency UV-Vis-IR full-spectrum laser source (300 nm to 5000 nm, peak value -25 dB) with an energy of 0.54 mJ per pulse. Aerated hollow core fiber (HCF) from a cascade structure, exposed lithium niobate (LN) crystal plates, specially designed chirped periodically polarized lithium niobate crystals (CPPLN) pumped by a 3.9 mm, 3.3 mJ mid-infrared pump pulse.

Pumped by a 3.3mJ 3.9μm mid-infrared femtosecond pulse laser, the HCF-LN system can generate a strong mid-infrared laser pulse of double bandwidth as a secondary FW pump input to CPPLN, which supports efficient broadband HHG processing, further extending the spectral bandwidth to UV-Vis-IR. It is clear that this cascade structure creatively satisfies two prerequisites for the generation of full-spectrum white light: Condition 1, a strongly frequency-doubled pump femtosecond laser, and condition 2, a nonlinear crystal with an extremely high frequency up-conversion bandwidth. In addition, the system involves a large number of synergies between 2nd-NL and 3rd-NL effects.

The synergistic mechanism they have developed provides superior capabilities for constructing UV-Vis-IR global supercontinuum spectra and filling spectral gaps between various HHGS, far exceeding what has been achieved with single-acting 2N-NL or 3rd-NL effects previously employed.

As a result, this cascaded HFC-LN-CPPLN optical module enables previously unachievable levels of strong full-spectrum laser output, not only with great bandwidth (spanning four octave multiplicities), but also with a spectral profile of high flatness (from 300 to 5000 nm, flatness better than 25 dB) and large pulse energy (0.54 mJ per pulse).

"We believe that our proposal is to use the synergy of 2NL-HHG and 3rd-NL SPM effects to create an intense four-octave UV-vision-infrared full-spectrum femtosecond laser source, which is a big step toward building supercontinuous spectral white laser sources with greater bandwidth, energy, higher spectral brightness, and flatter spectral profiles." "This intense full-spectrum femtosecond laser will provide a revolutionary tool for spectroscopy and find potential applications in physics, chemistry, biology, materials science, information technology, industrial processing and environmental monitoring," the scientists said.

Source: Chinese Optical Journal Network
Đề xuất liên quan
  • Osram's new laser headlights "Yutianba" are unveiled

    Recently, OSRAM, a well-known global automotive lighting brand, announced the launch of its modified new laser headlights - the Yutianba laser headlights. Laser headlights were once regarded by many car companies as the "successor" of LED headlights, and German century old automotive lighting expert Osram is precisely the pioneer of laser light sources for automotive headlights. Since the 2014 BMW...

    2024-05-06
    Xem bản dịch
  • Progress in Research on Transparent Ceramics for 3D Printing Laser Illumination at Shanghai Institute of Optics and Mechanics

    It is reported that the Research Center for Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination.Recently, the Research Center for Infrared Optical Materials of the Shanghai Institute of Optics and Precision Mechanics, Chines...

    2023-10-17
    Xem bản dịch
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    Xem bản dịch
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in attosecond imaging research

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in attosecond imaging research, achieving high-resolution imaging of ultra wide spectrum light sources. The related results were published in the journal Photonics Research under the title "Snapshot coherent diffraction imaging across ultra wideband spectra".Figure 1. Demonst...

    2024-10-26
    Xem bản dịch
  • Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

    A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirecti...

    2024-04-29
    Xem bản dịch