Tiếng Việt

Progress in research on intrinsic flexible and stretchable optoelectronic devices in the Institute of Chemistry

241
2024-04-09 15:58:58
Xem bản dịch

Organic polymer semiconductor materials, due to their unique molecular structure and weak van der Waals interactions, are endowed with the characteristics of soluble processing and easy flexibility, and have potential applications in portable and implantable medical monitoring devices. A highly flexible, skin conformal, and excellent spatial resolution X-ray detector is expected to be integrated with curved objects and moving entity systems to achieve intrinsic flexibility and high sensitivity in skin like X-ray detectors.

However, the stability and image resolution of X-ray detectors based on organic polymer semiconductor materials under irradiation are poor, which limits the application of such devices. Liu Yunqi, an academician of the CAS Member, and Guo Yunlong, a researcher in the Key Laboratory of the Institute of Mechanical and Solid State of the Chemical Research Institute, have made a series of progress in high-performance intrinsically stretchable organic optoelectronic materials and devices.

Recently, in response to the reported issues of high operating voltage, poor stability, and low integration of stretchable organic optoelectronic devices, the team has proposed a new strategy of using removable interfaces to assist in the preparation of high-density intrinsic stretchable organic transistor arrays. This strategy introduces a lithium fluoride sacrificial layer on patterned photoresist to construct a detachable interface, achieving scalable integration of high-resolution intrinsic stretchable electrodes. The short channel stretchable organic transistor prepared in this study has low operating voltage, high optoelectronic performance, and excellent stability. The stretchable image sensor based on this short channel transistor exhibits a resolution of up to 10 lp mm-1 and achieves images of millions of pixels. This strategy provides a simple and universal optoelectronic integration platform. The relevant results were published in Nature Communications.

In addition, the team published a review paper on "Emerging Materials and Transistors for Integrated Circuits" in the National Science Review, summarizing the molecular design of high mobility semiconductor materials and functional fusion of mechanical, optical, and thermal properties. They analyzed and looked forward to the research progress and direction of functionalized high mobility polymer semiconductors.
The research work was supported by the National Natural Science Foundation of China, the Ministry of Science and Technology and the Chinese Academy of Sciences.

A detachable interface strategy for achieving stable, low-voltage stretchable organic transistors and high-resolution X-ray imaging


Multi functional integrated high mobility organic polymer semiconductor molecular materials

Source: Institute of Chemistry

Đề xuất liên quan
  • Researchers have implemented a creative approach to reduce stray light using spatial locking technology based on periodic shadows

    Reducing stray light is one of the main challenges in combustion experiments using laser beams (such as Raman spectroscopy) for detection. By using a combination of ultrafast laser pulses and gated ICCD or emICCD cameras, a time filter can be effectively used to remove bright and constant flame backgrounds. When the signal reaches the detector, these cameras can open electronic shutters within the...

    2023-10-16
    Xem bản dịch
  • Lockheed Martin announces expansion of 16000 square feet 3D printing center

    Recently, US military industry giant Lockheed Martin announced that it will significantly increase its additive manufacturing capabilities and expand its factory in Texas. The expansion project includes approximately 16000 square feet of dedicated space for 3D printing technology, and the addition of some of the largest large format multi laser printers in the space (it is worth noting that Lockhe...

    2024-12-02
    Xem bản dịch
  • Implementation of 20W high-power fiber optic frequency comb by the Institute of Physics, Chinese Academy of Sciences

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification.However, due to the una...

    2023-10-11
    Xem bản dịch
  • The new method can maintain beam quality while significantly improving the power of fiber lasers

    The new discovery by optical scientists has brought new vitality to fiber lasers. This innovative method significantly improves the power of lasers without reducing beam quality, and will become an important defense technology for future low-cost drones and remote sensing.The research teams from the University of South Australia, the University of Adelaide, and Yale University have demonstrated ne...

    2023-12-22
    Xem bản dịch
  • Scientists use glass to create femtosecond lasers

    Image source: Federal Institute of Technology in Lausanne, SwitzerlandScience and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glas...

    2023-09-28
    Xem bản dịch