简体中文

On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

137
2024-01-12 13:56:39
查看翻译

Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.
In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.

Traditionally, the pulse interval of a laser is set by dividing each pulse into two pulses and delaying them at different mechanically adjustable distances. Alternatively, two laser sources with slightly different orbital periods ("double combs") can be used to generate rapid travel delays from the superposition of two pulse combs.

Professor Georg Herink, the leader of the Experimental Physics VIII - Ultra Fast Dynamics group at Bayreuth University, and his doctoral student Julia A. Lang collaborated with Professor Alfred Leinstorfer and Sarah R. Hutter from the University of Constance to demonstrate a pure optical method based on two pulse combs in a single laser. It can achieve extremely fast and flexible adjustable pulse sequences.

Meanwhile, this can be achieved in very compact fiberglass light sources. By combining two pulse combs outside the laser, researchers have obtained a pulse mode that can be set with any delay as needed.

The researchers used a technique: two pulses circulate in the laser instead of the usual single light pulse. "There is enough time between two pulses to apply a single 'interference' using the fast optical switch inside the laser," explained Lang, the first author of the study. "Using laser physics, this' intracavity modulation 'causes a change in pulse velocity, causing two pulses to move towards each other in time."

The laser source based on fiberglass was built by Hutter and Leitenstorfer from the University of Constance. Thanks to a special real-time measurement method, researchers at Bayreuth can now accurately observe how short light pulses (called solitons) move when external influences act on them. This real-time spectral interferometry method can accurately measure the distance between each pair of pulses - over 10 million times per second.

"We have demonstrated that we can quickly adjust time over a wide range and achieve freely programmable motion forms," explained Herink. The research now published in Progress in Science proposes an innovative method for controlling solitons, which not only provides new insights into soliton physics, but also opens up possibilities for the rapid and efficient application of ultra short laser pulses.

Source: Laser Net

相关推荐
  • Investing nearly £ 520 million, this synchrotron light source in the UK will be upgraded

    Recently, the UK's national synchrotron "Diamond Light Source" announced an investment of nearly £ 520 million ($648.3 million) to implement three new flagship beam lines and upgrade existing beam lines. This comprehensive upgrade will be delivered by 2030.The Department for Science, Innovation, and Technology and the biomedical charity Wellcome jointly approved the facility upgrade project,...

    2023-09-27
    查看翻译
  • Laser blasting promises to solve global plastic problem

    Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.This discovery has the potential to improve the way we handle plastics that...

    2024-07-16
    查看翻译
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    查看翻译
  • Researchers have discovered new multiphoton effects in quantum interference of light

    An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research."We have demonstrated through experiments that the interference eff...

    2024-01-24
    查看翻译
  • Advanced optical giant Schott announces completion of Malaysia factory

    Recently, German optical giant SCHOTT is pleased to announce that its advanced production plant located in Gulim, Kedah, Malaysia has been successfully completed. This milestone event was celebrated with the joint witness of employees, clients, and representatives from the Malaysian Investment Development Authority (MIDA).The completion of the new factory marks a significant increase in Schott's...

    2024-10-16
    查看翻译