简体中文

Aerosol jet printing can completely change the manufacturing of microfluidic devices

91
2024-02-02 18:12:01
查看翻译

Surface acoustic wave technology is renowned for its high precision and fast driving, which is crucial for microfluidics and affects a wide range of research fields. However, traditional manufacturing methods are time-consuming, complex, and require expensive cleanroom facilities.

A new method overcomes these limitations by utilizing aerosol jet printing to create customized equipment with various materials, greatly reducing development time.

In a study published in Microsystems and Nanoengineering, researchers from Duke University and Virginia Tech were the first to integrate aerosol jet printing technology into the manufacturing of SAW microfluidic devices. This progress provides a faster, more universal, and cleanroom free method for developing chip laboratory applications, completely changing the field from biology to medicine.

In this groundbreaking study, the team utilized aerosol jet printing to manufacture SAW microfluidic devices. This method contrasts sharply with traditional and cumbersome cleanroom processes.

It involves depositing various conductive materials onto substrates to form interdigital transducers, which is crucial for generating SAW to manipulate fluids and particles at the microscale.

It is worth noting that this method reduces the manufacturing time of each device from approximately 40 hours to approximately 5 minutes. The team thoroughly analyzed the acoustic performance of these printing equipment using a laser Doppler vibrometer and compared it with the equipment manufactured in the cleanroom.

The results demonstrate enormous potential, with printing equipment exhibiting similar or acceptable performance levels in terms of resonant frequency and displacement field. This study represents a significant advancement in the manufacturing of microfluidic devices, providing a faster, more adaptable, and more efficient alternative to traditional methods.

Dr. Tian Zhenhua, co-author of the study, said, "This is not just a step forward; it is a leap towards the future of microfluidic device manufacturing. Our method not only simplifies the process, but also opens up new possibilities for device customization and rapid prototyping design.".

The impact of the new method is enormous, as it provides a more convenient, faster, and cost-effective way to produce microfluidic equipment. It has the potential to accelerate research and development in numerous fields, enabling faster diagnosis, improved drug delivery systems, and enhanced biochemical analysis.

In addition, the versatility of this technology indicates its adaptability to various materials and substrates, and it is expected to be widely applied in various disciplines.

Source: Laser Net

相关推荐
  • Eurotech launches BestNet fiber rack mounting housing

    Fiber optic solution provider Eurotech announced the launch of a series of fiber optic rack mounting enclosures. The BestNet 19 inch top opening fiber optic interconnect unit is a fiber optic patch panel and cabinet, ideal for wiring, terminating, and managing fiber optic terminations, suitable for interconnect, cross connect, or splice applications in LAN environments. Modular fiber optic interco...

    2024-05-16
    查看翻译
  • Juguang Technology launches miniaturized high-power semiconductor laser stack GS09 and GA03

    In today's technology field, Juguang Technology released two highly anticipated high-power semiconductor lasers on December 13th: GS09 and GA03. These two products are leading the innovation wave in the laser industry with their miniaturized design, excellent thermal management capabilities, and extensive customization flexibility.GS09 revolutionizes chip spacing by compressing the width of the st...

    2023-12-15
    查看翻译
  • New two-photon aggregation technology significantly reduces the cost of femtosecond laser 3D printing

    Scientists at Purdue University in the United States have developed a new type of two-photon polymerization technology. This technology cleverly combines two lasers and utilizes 3D printing technology to print complex high-resolution 3D structures while reducing femtosecond laser power by 50%. It helps to reduce the cost of high-resolution 3D printing technology, thereby further expanding its appl...

    2024-07-05
    查看翻译
  • The constantly developing world of all-weather laser satellite communication

    Using light beams for communication is not a new idea, even outside of Star Trek, Star Wars, and other similar fantasy stories. Scientist and science fiction writer Arthur Clark predicted that beam communication, at that time modern satellite communication was just a dream.In 1975, the magazine published an article about laser communication or laser communication equipment. The demonstrati...

    2023-12-01
    查看翻译
  • Scientists have used 3D integration technology to bring ultra-low noise lasers without isolators to silicon photonics

    After electronic integrated circuits (Eics), silicon (Si) photonics technology is expected to achieve photonic integrated circuits (PIC) with high density, advanced functions and portability. Although various silicon photonics fountifiers are rapidly developing PIC capabilities to enable mass production of modulators, photodetectors and, more recently, lasers, silicon PIC has not yet met the strin...

    2023-08-04
    查看翻译