繁体中文

Laser technology helps wafer bonding, creating a cutting-edge laser system production factory

104
2024-06-19 15:17:30
查看翻譯

Recently, Coherent LaserSystems, the global leader in laser and photon solutions, and Fraunhofer IZM-ASSID jointly announced that they have reached a strategic partnership to develop and optimize alternative bonding and debonding technologies for advanced CMOS and heterogeneous integrated applications (including quantum computing), in which laser technology plays a crucial role.

 



It is reported that EV Group (EVG) is a leading supplier of wafer bonding and lithography equipment in the MEMS, nanotechnology, and semiconductor markets. Fraunhofer IZM-ASSID (All Silicon System Integration Dresden) is a division of Fraunhofer IZM, providing world leading application research in semiconductor 3D wafer level system integration.

It is reported that both parties have jointly built an advanced laser system production factory in Lubeck, Germany. This factory not only demonstrates the outstanding capabilities of both parties in technological innovation and green manufacturing, but also sets a new benchmark for the global laser industry.
In this collaboration, German construction company Siemke&Co Br ü cken (SBI) serves as the general contractor responsible for the construction of the entire facility. The new facilities will include approximately 2600 square meters of cleanroom, 1900 square meters of cleanroom expansion area, 1100 square meters of laboratory space, and over 3750 square meters of office, storage, and technical space. The new cleanroom of Coherent LaserSystems is scheduled to be completed in December 2025 and will meet the very demanding ISO Level 6 classification requirements.

In the laser industry, clean rooms have special requirements for particle sensitive components, and even the smallest particle deviation can have a significant impact on product quality and function.

Maximilian Busch, Sales and Engineering Director of the Building Technology Business Unit at ENGIE Germany, said, "Cleanrooms have special requirements in terms of personal, product, and environmental protection. Our ENGIE Germany company is very proud to have achieved a perfectly coordinated concept for Coherent LaserSystems, meeting the cleanliness requirements of production while also setting new standards for cost-effectiveness and sustainability of cleanrooms."

To achieve the high standard cleanliness requirements of ISO 6, the ENGIE expert team will use their own top components and filter units. In addition, the new facilities also focus on energy efficiency. Germany's ENGIE will install a photovoltaic system with a peak output of 230 kilowatts on the roof of the building, achieving complete electricity supply from renewable energy. Meanwhile, the environmentally friendly heat recovery technology provided by sister company ENGIE Refrigeration will provide cooling supply for two water-cooled quantum refrigeration machines, with a total cooling capacity of 2 megawatts, and meet all heating needs of the building.

Busch concluded, "In the new cleanroom of Coherent LaserSystems, we have successfully combined the highest standards of functionality, sustainability, and the right concepts to demonstrate outstanding performance even in sensitive environments. This not only sets an example for the entire industry, but also fulfills our ENGIE proposition of accompanying customers towards climate neutrality in the best way possible."

ENGIE Germany has over 30 years of rich experience in clean room technology, and this collaboration with Coherent LaserSystems once again proves its outstanding strength in demanding industries such as optics, laser technology, pharmaceuticals, biotechnology, chemicals, plastics, and automobiles.
Fraunhofer IZM-ASSID is installing the EVG 850 DB fully automatic UV laser debonding and cleaning system at its Advanced CMOS and Heterogeneous Integrated Saxony Center (CEASAX) located in Dresden, Germany. It is reported that the EVG850 DB fully automatic ultraviolet laser debonding and cleaning system can achieve high-throughput and low-cost room temperature debonding for ultra-thin and stacked fan-shaped packaging. It integrates solid-state ultraviolet lasers and proprietary beam shaping optical devices to achieve optimized powerless carrier emission.

Fraunhofer IZM-ASSID is a leading research and development partner in the field of heterogeneous 3D wafer level system integration, capable of implementing 3D intelligent systems. It has a fully equipped 300mm wafer production line for advanced wafer level packaging, ISO certified, and provides industrial compatible process equipment for processing 200mm and 300mm wafers. On this basis, Fraunhofer IZM Dresden factory provides customers with process and technology development through prototype production and small batch production.

EV Group is a leading supplier of manufacturing equipment and process solutions for semiconductors, microelectromechanical systems (MEMS), compound semiconductors, power devices, and nanotechnology devices. The main products include wafer bonding, thin wafer processing, lithography/nanoimprint lithography (NIL) and metrology equipment, as well as photoresist coating machines, cleaning machines, and detection systems.
Temporary wafer bonding is a widely used method to ensure the processing of thin wafers (silicon thickness below 100 microns), which is crucial for 3D ICs, power devices, and Fan Out Wafer Level Packaging (FOWLP), as well as handling fragile substrates such as compound semiconductors.

The debonding of the carrier wafer is a necessary step in preparing the device wafer, in order to separate and integrate the mold into the final device or application. Fraunhofer IZM-ASSID can complete these debonding processes completely on its own using EVG850 DB, greatly reducing the development time of the optimal process flow for various adhesive systems. On the contrary, this will enable Fraunhofer IZM-ASSID to customize processes according to the specific needs of numerous customers.

Source: OFweek

相關推薦
  • Using high-speed scanning remelting technology to achieve AlSi10Mg laser powder bed fusion with excellent strength and plasticity properties

    The development of additive manufacturing (AM) has profoundly changed the manufacturing industry, and this technology has been applied in fields such as food, medicine, automotive, and electronic components. Especially in the aerospace field, where extremely lightweight and high-strength (~500mpa) components are required, aluminum alloy additive manufacturing is considered a very promising solutio...

    2024-10-08
    查看翻譯
  • HP100A-50KW-GD laser power detector for measuring extremely high power laser beams

    The HP100A-50KW-GD laser power detector is mainly designed for manufacturers of high-power lasers and laser systems, factories that use high-power lasers to cut thick metal parts, and military applications.The HP100A-50KW-GD adopts a gold reflector cone and a reduced back reflection geometry, which can capture 97% of incident light and process up to 50 kW of continuous laser power. The back reflec...

    2024-01-16
    查看翻譯
  • Atomstack leads the new track of intelligent laser engraving

    In today's rapidly developing technology, laser engraving technology is like a mysterious magician, constantly demonstrating amazing skills. In this field full of creativity and competition, Atomstack stands out with its outstanding technology and innovative spirit, becoming a leader in the new track.As the only enterprise in the semiconductor laser engraving machine industry with an annual shipme...

    2024-11-15
    查看翻譯
  • Veeco Instruments wins IBM big order

    On August 14th local time, Veeco Instruments, a well-known American laser annealing manufacturer, announced an important cooperation with technology giant IBM. It is reported that IBM has selected Veeco Instruments' WaferStorm wet processing system as support for its advanced packaging applications, and the two parties have signed a joint development agreement to explore the potential of utilizi...

    2024-08-23
    查看翻譯
  • New progress in in-situ identification and quantitative research of methane carbon isotopes in the ocean

    Recently, Zhang Xin's research team from the Institute of Oceanography, Chinese Academy of Sciences, based on the in-situ laser Raman spectroscopy technology, made new progress in the in-situ recognition and quantification of methane carbon isotopes by using the significant differences in the Raman spectra of methane carbon isotopes (13CH4 and 12CH4). The relevant results were recently published i...

    2023-10-13
    查看翻譯