English

Uncovering the Secrets of Nature: A New Generation of X-ray Lasers Reveals the Mystery of Atoms

140
2023-09-25 14:48:44
See translation

As a breakthrough leap in scientific exploration, the new generation of powerful X-ray lasers is now targeting the fastest and most basic processes in nature. Their mission: to uncover the complex atomic arrangement that drives these phenomena, providing unprecedented insights into chemical reactions, electronic behavior in materials, and the mysteries of the natural world.

Unlocking the precise mechanisms by which atoms participate in chemical reactions and electronic navigation materials can provide valuable knowledge for scientists seeking to replicate the extraordinary feats and efficiency of nature. From simulating the energy conversion process in plants to utilizing the unique characteristics of minerals to provide power for our electronic products, it has a wide range of applications and is transformative.

Professor Matthias Kling of Photonics at Stanford University affirmed the importance of this effort. He said in an interview with Axios, "We will be able to conduct experiments that were previously impossible. This information can be obtained through X-rays similar to lasers, and cannot be obtained through any other means.

The spotlight shines on the world's most powerful X-ray laser, marking a historic milestone recently. The Linear Accelerator Coherent Light Source (LCLS-II) X-ray Free Electron Laser (XFEL) at the SLAC National Accelerator Laboratory launched its first pulse last week, heralding a new era of scientific exploration.

The miracle of this upgraded version can release nearly 1 million X-ray flashes per second, which is an astonishing leap compared to its predecessor, with a power increase of nearly 8000 times. SLAC, with the support of Stanford University and the support of the Department of Energy, is the driving force behind this breakthrough progress.

The clever mechanism behind this scientific miracle involves pushing electrons to speeds close to the speed of light. Once in motion, these electrons will be cleverly manipulated to emit X-rays.

These high-energy X-ray pulses can be cleverly focused on tiny targets, providing a delicate and detailed window for the molecular world. These snapshots, combined together, can produce vivid movie sequences that showcase the complex dance of molecular interactions.

Breaking through the boundaries of cold
The originality of LCLS-II goes beyond that. The instrument uses superconductors and is cooled to a chilling 2 Kelvin temperature, which is even colder than the vast outer space. This cold environment is conducive to electrons accelerating with unparalleled accuracy and control along a 2-kilometer long tunnel.

Furthermore, LCLS-II's ambition goes beyond producing "low energy" X-rays. Plans are underway to enhance the instrument's capabilities to produce "hard" X-rays. The wavelengths of these hard X-rays are comparable to the distance between two bonded atoms, which is expected to reveal the complex details of atomic bonds and their angles between them.

In the intersection of cutting-edge technology and scientific curiosity, LCLS-II has opened up new fields for us to explore and control the atomic complexity of the natural world. Every X-ray flash beckons us one step closer to unraveling the deepest mysteries of nature.

Source: Laser Network

Related Recommendations
  • Nankai University makes progress in the field of free electron photon interactions

    Recently, a research team led by Professor Cai Wei and Professor Xu Jingjun from the School of Physical Sciences at Nankai University has experimentally confirmed for the first time the generation of polaritons, also known as Smith Purcell radiation, at the two-dimensional scale, and further demonstrated the ability of free electrons to regulate two-dimensional Smith Purcell radiation. The researc...

    02-11
    See translation
  • Observation of laser power changes in ultrafast protein dynamics

    When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state with...

    2024-02-28
    See translation
  • Due to breakthroughs in microchip photonics, microwave signals have now become very accurate

    Zhao Yun/Columbia Engineering Company provided an advanced schematic of a photonic integrated chip, which aims to convert high-frequency signals into low-frequency signals using all optical frequency division.Scientists have built a small all optical device with the lowest microwave noise ever recorded on integrated chips.In order to improve the performance of electronic devices used for global n...

    2024-04-01
    See translation
  • SuperLight Launches "First" Portable Broadband Laser

    Supercontinuum spectrum laser developer SuperLight Photonics has launched the so-called "first revolutionary portable broadband laser" - SLP-1000. Its wide spectral output provides a light source for industrial and medical imaging applications as well as spectroscopy.Supercontinuum spectrum lasers, also known as broadband lasers, provide high bandwidth while maintaining high coherence and low nois...

    2023-11-02
    See translation
  • Shanghai Optics and Fine Mechanics Institute has made progress in the new holographic imaging technology of frequency domain direct sampling

    Recently, a research team from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new holographic imaging technology using frequency domain direct sampling. The relevant results were published in Optics Letters under the title of "Fourier inspired single pixel holography".Digital holography is a tech...

    03-20
    See translation