English

The research team developed additive manufacturing (AM) technology based on hydrogel injection, and related research was published on Nano Letters

44
2023-09-25 15:10:20
See translation

It is reported that the research team of California Institute of Technology has developed an additive manufacturing (AM) technology based on hydrogel injection, which uses two-photon lithography technology to produce 3D metal with a characteristic resolution of about 100 nm.

The relevant research is published in the journal Nano Letters, titled 'Suppressed Size Effect in Nanopillars with Hierarchy Microstructures Enabled by Nanoscale Additive Manufacturing'.

Keywords: additive manufacturing; Two photon lithography; Nickel; Nanomechanics; molecular dynamics
At the end of last year, researchers at the California Institute of Technology revealed that they had developed a new manufacturing technology that could print tiny metal parts as thick as three to four sheets of paper.

Now, the team has reinvented this technology, which can print objects a thousand times smaller than before: 150 nanometers, the size of a flu virus. During this process, the research team also found that the atomic arrangement inside these objects is disordered. However, in the case of nanoscale metal objects, this disordered atomic arrangement is 3 to 5 times stronger than similar sized structures with ordered atomic arrangements.

This new technology is similar to another technology announced by the team last year, but each step is redesigned to work at the nanoscale. However, this poses another challenge: creating invisible or difficult to manipulate objects.

The first step in this process is to prepare a photosensitive "cocktail" mixture, mainly composed of hydrogel, which is a polymer that can absorb water many times its own weight. Then, the mixture is selectively hardened with a laser to establish a 3D scaffold with the same shape as the desired metal object. In this study, these objects were a series of tiny pillars and nanolattices.

The hydrogel is then partially injected into an aqueous solution containing nickel ions. Once the mixture is saturated with metal ions, they will be baked until all the hydrogels are burned out. Although the remaining part has shrunk, it still has the same shape as the original one, and is completely composed of oxidized metal ions (combined with oxygen atoms). In the final step, oxygen atoms are chemically peeled off from the part, converting the metal oxide back into metallic form.

Researchers claim that during this process, all these thermal and dynamic processes occur simultaneously, resulting in a very, very chaotic microstructure. Defects such as pores and irregularities in the atomic structure will be observed, which are usually considered as defects with deteriorating strength. If you want to make something from steel, such as an engine cylinder block, you wouldn't want to see this microstructure because it greatly weakens the strength of the material.

However, their findings are on the contrary, weakening the strength defects of metal components on a larger scale actually enhances nanoscale components.

Researchers believe that this is one of the first demonstrations of 3D printing of nanoscale metal structures. This process can be used to manufacture many useful components, such as catalysts for hydrogen; Electrodes for storing carbon free ammonia and other chemicals; And the basic components of devices such as sensors, micro robots, and heat exchangers.

Source: Sohu


Related Recommendations
  • CO2 laser cutting machine for battery shell shaped parts: an innovative tool in energy technology manufacturing

    The development of new energy technology has made battery technology the engine for advancing clean energy. In battery manufacturing, the cutting of battery shell shaped parts is a crucial step. CO2 laser cutting machines have become an innovative tool for promoting the development of this field due to their high efficiency and precision. This article will delve into the important characteristics ...

    2023-12-25
    See translation
  • Micro optical technology based on metasurfaces has become a hot topic

    Introduction and application of a micro optical platform using metasurfacesMetasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR ...

    2024-02-02
    See translation
  • Guangfeng Technology releases the world's first versatile laser headlights

    On April 25th, 2024, the Beijing International Auto Show officially opened, and Guangfeng Technology released the world's first ALL-IN-ONE all-around laser headlights.This headlight is the first to integrate multiple functions such as high beam ADB headlights, color changing temperature headlights, fog lights, ground information display, car cinema, etc. into a small volume headlight module, achie...

    2024-04-29
    See translation
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    See translation
  • Renowned companies such as TRUMPF and Jenoptik participate in high-power laser projects in Germany

    High power laser diodes will be key components of future fusion power plants.Recently, the German Federal Ministry of Education and Research (BMBF) launched a new project called "DioHELIOS". The project will last for 3 years and is part of BMBF's "Fusion 2040" funding program, which aims to build the first nuclear fusion power plant in Germany by 2040.The project will last for three years and rece...

    2024-11-09
    See translation