English

The research team developed additive manufacturing (AM) technology based on hydrogel injection, and related research was published on Nano Letters

1030
2023-09-25 15:10:20
See translation

It is reported that the research team of California Institute of Technology has developed an additive manufacturing (AM) technology based on hydrogel injection, which uses two-photon lithography technology to produce 3D metal with a characteristic resolution of about 100 nm.

The relevant research is published in the journal Nano Letters, titled 'Suppressed Size Effect in Nanopillars with Hierarchy Microstructures Enabled by Nanoscale Additive Manufacturing'.

Keywords: additive manufacturing; Two photon lithography; Nickel; Nanomechanics; molecular dynamics
At the end of last year, researchers at the California Institute of Technology revealed that they had developed a new manufacturing technology that could print tiny metal parts as thick as three to four sheets of paper.

Now, the team has reinvented this technology, which can print objects a thousand times smaller than before: 150 nanometers, the size of a flu virus. During this process, the research team also found that the atomic arrangement inside these objects is disordered. However, in the case of nanoscale metal objects, this disordered atomic arrangement is 3 to 5 times stronger than similar sized structures with ordered atomic arrangements.

This new technology is similar to another technology announced by the team last year, but each step is redesigned to work at the nanoscale. However, this poses another challenge: creating invisible or difficult to manipulate objects.

The first step in this process is to prepare a photosensitive "cocktail" mixture, mainly composed of hydrogel, which is a polymer that can absorb water many times its own weight. Then, the mixture is selectively hardened with a laser to establish a 3D scaffold with the same shape as the desired metal object. In this study, these objects were a series of tiny pillars and nanolattices.

The hydrogel is then partially injected into an aqueous solution containing nickel ions. Once the mixture is saturated with metal ions, they will be baked until all the hydrogels are burned out. Although the remaining part has shrunk, it still has the same shape as the original one, and is completely composed of oxidized metal ions (combined with oxygen atoms). In the final step, oxygen atoms are chemically peeled off from the part, converting the metal oxide back into metallic form.

Researchers claim that during this process, all these thermal and dynamic processes occur simultaneously, resulting in a very, very chaotic microstructure. Defects such as pores and irregularities in the atomic structure will be observed, which are usually considered as defects with deteriorating strength. If you want to make something from steel, such as an engine cylinder block, you wouldn't want to see this microstructure because it greatly weakens the strength of the material.

However, their findings are on the contrary, weakening the strength defects of metal components on a larger scale actually enhances nanoscale components.

Researchers believe that this is one of the first demonstrations of 3D printing of nanoscale metal structures. This process can be used to manufacture many useful components, such as catalysts for hydrogen; Electrodes for storing carbon free ammonia and other chemicals; And the basic components of devices such as sensors, micro robots, and heat exchangers.

Source: Sohu


Related Recommendations
  • Composite two-dimensional materials for fiber lasers demonstrate the prospects of ultra fast optical applications

    The formation of dissipative solitons is influenced by various factors, such as spectral filtering effect and Kerr nonlinearity effect. This interaction leads to the possibility of mode locking on a large range of parameters, generating pulses with completely different types and evolution from conventional physical laws and optical properties, tolerating higher nonlinear effects, and effectively a...

    2023-09-21
    See translation
  • Oxford University Tokamak Energy Company develops laser technology for fusion power plants

    Tokamak Energy is currently developing a new laser measurement technology for controlling extreme conditions inside fusion power plants.The laser based dispersion interferometer system is being tested at the company's headquarters in Oxford and will be installed on its world record breaking fusion machine ST40 later this year.Clean, safe, and renewable nuclear fusion power generation occurs inside...

    2024-03-14
    See translation
  • An optical display technology based on mechanical optical mechanism

    The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP ...

    2024-03-12
    See translation
  • LAP launches CAD-PRO Xpert, an industrial laser projector using cutting-edge technology platforms

    LAP launched its latest version of the industrial laser projection system CAD-PRO Xpert at this year's JEC World. This innovation signifies the company's commitment to providing the most advanced laser engineering for various industries to achieve precise, efficient, and reliable laser guidance and positioning tasks, which is an important milestone.Redefining laser projection in the production pro...

    2024-03-07
    See translation
  • Upgrading 3000W fiber laser to high energy and miniaturization has become a new trend

    Recently, the discussion on "miniaturization" in the domestic laser industry has become increasingly heated. From various exhibition venues, miniaturization and lightweight have become important display directions for fiber laser manufacturers.High energy and miniaturization have become new trendsIn the past few years, high-power has undoubtedly been the main development direction in the field of ...

    2023-09-20
    See translation